例1 用图中所示的辅助线的方法.证明同一条底边上的两个内角相等的梯形是等腰梯形. 已知:如图27.3.10.在梯形ABCD中.AD∥BC.∠B=∠C. 求证:四边形ABCD是等腰梯形. 证明 延长BA和CD交于E. 因为∠B=∠C. 所以BA=CE. 有因为AD∥BC. 所以∠B=∠EAD.∠C=∠EDA. 所以∠EAD=∠EDA. 所以AE=DE. 所以BE-BA=CE-CD. 即AB=CD. 所以四边形ABCD是等腰梯形. 例2 如图.在等腰梯形ABCD中.AB∥DC.AD=BC.且AC⊥BD.CH是高. 求证:AB+CD=2CH. 证明 过C作CE∥DB.交AB的延长线于E. 因为AB∥DC.CE∥DB. 所以四边形DBEC是平行四边形. 所以CD=BE.CE=BD. 又因为等腰梯形ABCD. 所以AC=BD. 所以AC=CE. 又因为CH是高. 所以AH=HE. 因为AC⊥BD.CE∥DB. 所以AC⊥CE. 所以2CH=AE=AB+BE=AB+DC. 即AB+DC=2CH. 查看更多

 

题目列表(包括答案和解析)

本节我们学习了定理:“直角三角形斜边上的中线等于斜边的一半。”即:
如图①所示,在Rt △ABC中,∠ACB=90°,若CD 是斜边AB上的中线,则有CD=AB。证明这个定理的方法有多种,教材是利用矩形的性质进行证明的,其实还可利用三角形的中位线定理来证明,请你根据图中已添的辅助线证明此定理。
(1)方法(一):如图②所示,延长BC至E,使CE=BC,连结AE;
(2 )方法(二):如图③所示,取BC的中点E,连结DE。

查看答案和解析>>

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
b
sinB
=
c
sinC

这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,精英家教网过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=
AD
AB
,则AD=csinB
Rt△ACD中,sinC=
AD
AC
,则AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种(  )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度数.

查看答案和解析>>

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:数学公式
这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=数学公式,则AD=csinB
Rt△ACD中,sinC=数学公式,则AD=bsinC
所以c sinB=b sinC,即数学公式
(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=数学公式,∠C=60°,求∠B的度数.

查看答案和解析>>

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=,则AD=csinB
Rt△ACD中,sinC=,则AD=bsinC
所以c sinB=b sinC,即
(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种( )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=,∠C=60°,求∠B的度数.

查看答案和解析>>

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=,则AD=csinB
Rt△ACD中,sinC=,则AD=bsinC
所以c sinB=b sinC,即
(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种( )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=,∠C=60°,求∠B的度数.

查看答案和解析>>


同步练习册答案