3.认知难点与突破方法 难点是方程解的意义和检验一个数是不是一个一闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛樸亜閵忊剝绀嬮柡浣瑰姍瀹曞崬鈻庡Ο鎭嶆氨绱撻崒娆掑厡闁稿鎹囧畷鏇㈠箮鐟欙絺鍋撻敃鍌涘€婚柦妯侯槼閹芥洟姊洪崫鍕窛闁哥姵鎸剧划缁樸偅閸愨晝鍘介梺閫涘嵆濞佳勬櫠椤栫偞鐓熸繝闈涙处閳锋帞绱掓潏銊ユ诞闁诡喗鐟╅、妤呭焵椤掑嫬绀夐柕鍫濐槹閻撶喖鐓崶銊︹拻缂佺姷鍋ら弻娑㈠煛閸愩劋妲愬Δ鐘靛仜椤戝寮崒鐐村癄濠㈣泛顦伴惈蹇涙⒑鐠囧弶鍞夋い顐㈩槸鐓ら柡宥庣亹瑜版帒纾奸柣鎰级鏉堝牓姊虹捄銊ユ灁濠殿喚鏁婚崺娑㈠箣閿旂晫鍘甸梺鍏肩ゴ閺呮稒绂掑⿰鍫熺厓鐟滄粓宕滃顑炴椽鎮㈤悡搴g暫閻熸粍鍨圭划璇测槈濡攱顫嶅┑鈽嗗灥閸嬫劙寮搁埀顒勬⒒閸屾瑧顦︾紓宥咃工铻為柛褎顨嗛崐鍧楁煥閺囩偛鈧摜澹曟繝姘€甸柨婵嗛閺嬬喖鏌i幘瀛樼闁靛洤瀚伴獮鍥礈娴g懓浠圭紓鍌欒兌婵敻鏁冮姀銈呰摕闁挎繂顦伴崑鍕煛婢跺鐏ユい顐㈡搐閳规垿顢欑涵鐑界反濠电偛鎷戠徊鍨i幇鏉跨闁瑰啿纾崰鏍箹瑜版帒鎹舵い鎾跺枎濞呮瑩姊婚崒姘偓宄懊归崶顒夋晪鐟滃繘骞戦姀銈呯婵犻潧鐗婂▓鏇㈡⒑閸涘﹦鈽夐柨鏇悼閹广垽宕卞☉娆戝幗闂侀潧绻嗛幊姘跺捶椤撶姷鐒奸柣搴秵閸嬩焦绂嶅⿰鍫熺厸鐎广儱鍟俊浠嬫煟閵婏箑鐏﹂柕鍥у瀵剟宕犻檱閸氼偄鈹戦纭烽練婵炲拑缍侀獮澶愬箻椤旇偐顦板銈嗗坊閸嬫捇鏌涢幘宕囩Ш婵﹥妞介獮鏍倷閹绘帩娼庡┑鐐茬摠缁繐鈻斿☉銏╂晪闁挎繂顦介弫鍐煥濠靛棗鏆欏ù婊勭箞濮婃椽宕ㄦ繝鍌氼潊闂佸搫鎳忕换鍫濈暦閵忥紕顩烽悗锝庡亞閸樼敻姊虹粙璺ㄧ闁稿鍔欏鍐差潨閳ь剟寮诲☉銏犖╅柕澶樺枤閸氬鎮楃憴鍕闁搞劏娉涢锝嗙節濮橆儵銊╂煥閺冣偓閸庢娊鐛澶嬧拻濞达絽鎲¢崯鐐烘煕椤垵鐏︾€规洘鍔欏浠嬵敃閻旇渹澹曞┑顔结缚閸嬫挾鈧熬鎷�查看更多

 

题目列表(包括答案和解析)

下列各数是方程解的是( )
A.6
B.2
C.4
D.0

查看答案和解析>>

下列各数是方程数学公式解的是


  1. A.
    6
  2. B.
    2
  3. C.
    4
  4. D.
    0

查看答案和解析>>

我国著名数学家苏步青在访问德国时,德国一位数学家给他出了这样一道题目:
甲、乙二人相对而行,他们相距10千米,甲每小时走3千米,乙每小时走2千米,甲带着一条狗,狗每小时跑5千米,狗跑得快,它同甲一起出发,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去,问当甲、乙两人相遇时,这条狗一共跑了多少千米?
苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?
这道题最让人迷惑不解的是甲身边的那条狗.如果我们先计算狗从甲的身边跑到乙的身边的路程s,再计算狗从乙的身边跑到甲的身边的路程s,…,显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授从整体着眼,根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(小时),这样就不难求出狗一共跑的路程是:5×2=10(千米).
苏步青教授在解题时,把注意力和着眼点放在问题的整体结构上,从而能触及问题的实质:狗从出发到甲、乙两相遇所用的时间,恰好是甲、乙二人相遇所用的时间,从而使问题得到巧妙地解决.苏教授这种解决问题的思想方法实际上就是数学中的整体思想的应用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.在解二元一次方程组时,也要注意这种思想方法的应用.
比如解方程组
x+2(x+2y)=4
x+2y=1

解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程组的解为
x=2
y=-
1
2

同学们,你会用同样的方法解下面两个方程吗?试试看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>

我国著名数学家苏步青在访问德国时,德国一位数学家给他出了这样一道题目:
甲、乙二人相对而行,他们相距10千米,甲每小时走3千米,乙每小时走2千米,甲带着一条狗,狗每小时跑5千米,狗跑得快,它同甲一起出发,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去,问当甲、乙两人相遇时,这条狗一共跑了多少千米?
苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?
这道题最让人迷惑不解的是甲身边的那条狗.如果我们先计算狗从甲的身边跑到乙的身边的路程s,再计算狗从乙的身边跑到甲的身边的路程s,…,显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授从整体着眼,根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(小时),这样就不难求出狗一共跑的路程是:5×2=10(千米).
苏步青教授在解题时,把注意力和着眼点放在问题的整体结构上,从而能触及问题的实质:狗从出发到甲、乙两相遇所用的时间,恰好是甲、乙二人相遇所用的时间,从而使问题得到巧妙地解决.苏教授这种解决问题的思想方法实际上就是数学中的整体思想的应用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.在解二元一次方程组时,也要注意这种思想方法的应用.
比如解方程组数学公式
解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-数学公式
所以方程组的解为数学公式
同学们,你会用同样的方法解下面两个方程吗?试试看!
(1)数学公式(2)数学公式

查看答案和解析>>

我国著名数学家苏步青在访问德国时,德国一位数学家给他出了这样一道题目:
甲、乙二人相对而行,他们相距10千米,甲每小时走3千米,乙每小时走2千米,甲带着一条狗,狗每小时跑5千米,狗跑得快,它同甲一起出发,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去,问当甲、乙两人相遇时,这条狗一共跑了多少千米?
苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?
这道题最让人迷惑不解的是甲身边的那条狗.如果我们先计算狗从甲的身边跑到乙的身边的路程s,再计算狗从乙的身边跑到甲的身边的路程s,…,显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授从整体着眼,根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(小时),这样就不难求出狗一共跑的路程是:5×2=10(千米).
苏步青教授在解题时,把注意力和着眼点放在问题的整体结构上,从而能触及问题的实质:狗从出发到甲、乙两相遇所用的时间,恰好是甲、乙二人相遇所用的时间,从而使问题得到巧妙地解决.苏教授这种解决问题的思想方法实际上就是数学中的整体思想的应用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.在解二元一次方程组时,也要注意这种思想方法的应用.
比如解方程组
x+2(x+2y)=4
x+2y=1

把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程组的解为
x=2
y=-
1
2

同学们,你会用同样的方法解下面两个方程吗?试试看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>


同步练习册答案