1.利用三角形全等证明.2.利用定理“平行四边形对边相等 . 相关认知: 查看更多

 

题目列表(包括答案和解析)

4个全等的直角三角形的直角边分别为a、b,斜边为c.现把它们适当拼合,可以得到如图的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.

查看答案和解析>>

勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b-a.
∵S四边形ADCB=S△ACD+S△ABC=
1
2
b2+
1
2
ab.
又∵S四边形ADCB=S△ADB+S△DCB=
1
2
c2+
1
2
a(b-a)
1
2
b2+
1
2
ab=
1
2
c2+
1
2
a(b-a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:a2+b2=c2
证明:连结
 

∵S五边形ACBED=
 

又∵S五边形ACBED=
 

 

∴a2+b2=c2

查看答案和解析>>

作业宝4个全等的直角三角形的直角边分别为a、b,斜边为c.现把它们适当拼合,可以得到如图的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.

查看答案和解析>>

4个全等的直角三角形的直角边分别为a、b,斜边为c现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理.你能说明其中的道理吗?请试一试.

查看答案和解析>>

感知:利用图形中面积的等量关系可以得到某些数学公式.例如,根据图①甲,我们可以得到两数和的平方公式:,根据图①乙能得到的数学公式是                  

拓展:图②是由四个完全相同的直角三角形拼成的一个大正方形,直角三角形的两直角边长为,斜边长为,利用图②中的面积的等量关系可以得到直角三角形的三边长之间的一个重要公式,这个公式是:               ,这就是著名的勾股定理.请利用图②证明勾股定理.
应用:我国古代数学家赵爽的“勾股圆方图”是由四个完全相同的直角三角形与中间的一个小正方形拼成一个大正方形(如图③所示).如果大正方形的面积是17,小正方形的面积是1,直角三角形的两直角边长分别为,那么的值是         

查看答案和解析>>


同步练习册答案