1.平行四边形是一类特殊的四边形.即两组对边分别平行的四边形.平行四边形是中心对称图形.它的对角线的交点为对称中心. 查看更多

 

题目列表(包括答案和解析)

四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质,只要善于观察、乐于探索,我们会发现更多的结论.问题的提出:四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个小三角形,其中相对的两对三角形的面积之积有何关系?你能探索出结论吗?

(1)为了更直观的发现问题,我们不妨先在特殊的四边形——平行四边形中,研究这个问题:已知:在ABCD中,O是对角线BD上任意一点(如图①)求证:S△OBC·S△OAD=S△OAB·S△OCD

(2)有了(1)中的探索过程作参照,你一定能类比出一般四边形(如图②)中,解决问题的办法了吧!填写结论并写出证明过程.

已知:在四边形ABCD中,O是对角线BD上任意一点.(如图②)

求证:________.

证明:

(3)在三角形中(如图③),你能否归纳出类似的结论?若能,用文字叙述你归纳出的结论,并写出已知、求证和证明过程;若不能,说明理由.

查看答案和解析>>

对四边形的观察与探索

  四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.

  问题的提出:四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形,其中相对的两对三角形的面积之积有何关系?你能探索出结论吗?

(1)为了更直观的发现问题,我们不妨先在特殊的四边形--平行四边形中,研究这个问题:

已知:在ABCD中,O是对角线BD上任意一点(如图),求证:S△OBC·S△OAD=S△OAB·S△OCD

(2)有了(1)中的探索过程作参照,你一定能类比出在一般四边形(如图)中,解决问题的办法了吧!填写结论并写出证明过程.

已知:在四边形ABCD中,O是对角线BD上任意一点(如图)

求证:________________

(3)在三角形中(如图),你能否归纳出类似的结论?若能,用文字叙述你归纳出的结论,并写出已知、求证和证明过程;若不能,说明理由.

查看答案和解析>>

类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.

(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是______,CG和EH的数量关系是______,的值是______.
(2)类比延伸
如图2,在原题的条件下,若=m(m>0),则的值是______(用含有m的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0)
,则的值是______(用含a、b的代数式表示).

查看答案和解析>>

类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.

(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是______,CG和EH的数量关系是______,的值是______.
(2)类比延伸
如图2,在原题的条件下,若=m(m>0),则的值是______(用含有m的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0)
,则的值是______(用含a、b的代数式表示).

查看答案和解析>>

类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.

(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是______,CG和EH的数量关系是______,的值是______.
(2)类比延伸
如图2,在原题的条件下,若=m(m>0),则的值是______(用含有m的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0)
,则的值是______(用含a、b的代数式表示).

查看答案和解析>>


同步练习册答案