2.点在圆上.即d=r 查看更多

 

题目列表(包括答案和解析)

如图,⊙O是△ABC的外接圆,∠BAC=50°,点PAO上(点P不与点AO重合),则∠BPC可能为________度(写出一个即可).

查看答案和解析>>

如图,△内接于⊙,点的延长线上,sinB=,∠CAD=30°⑴求证:是⊙的切线;⑵若,求的长。

【解析】(1)连接OA,由于sinB=,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;

(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.

 

查看答案和解析>>

如图,△内接于⊙,点的延长线上,sinB=,∠CAD=30°⑴求证:是⊙的切线;⑵若,求的长。

【解析】(1)连接OA,由于sinB=,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;

(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.

 

查看答案和解析>>

1.如图,一个圆柱的底面周长是10 cm,圆柱的高为12 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是________

解:将圆柱沿侧面AD剪开,得到如图所示的侧面展开图,求蚂蚁爬行的最短路程,就是求________的长.在RtABC中,∠ACB90°,AC________BC________,由勾股定理,得AB2AC2BC2________,所以AB________,即蚂蚁爬行的最短路程是________

2.在上面求解过程中,用到的数学思想是________思想;在利用勾股定理解决实际问题时,除了这种数学思想,还会用到方程思想、分类思想等.在解决问题时要注意灵活运用这些数学思想哟!

查看答案和解析>>

已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.

(1)如图①,当PA的长度等于     时,∠PAB=60°;当PA的长度等于      时,△PAD是等腰三角形;

(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐标为(a,b),试求2 S1 S3-S22的最大值,并求出此时a,b的值.

 

 

查看答案和解析>>


同步练习册答案