4.揭示新课 (这节课我们就来学习3.3 代数式的值) 查看更多

 

题目列表(包括答案和解析)

你玩过“数字黑洞”的游戏吗?“数字黑洞”,即满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.下面我们就来玩一种数字游戏,它可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写出一个新的三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数按照第二步的规则继续操作,直至这个数不再变化为止.不管你开始写的是一个什么数,几步之后变成的自然数总是相同的,最后这个总相同的数就称为“黑洞数”.请你以2008为例尝试一下:第一步写出2008,第二步之后变为
404
404
,再变为
303
303
,再变为
123
123
,再变为
123
123
,再变为
123
123
,…所以这个数字游戏的“黑洞数”是
123
123

查看答案和解析>>

你玩过“数字黑洞”的游戏吗?“数字黑洞”,即满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.下面我们就来玩一种数字游戏,它可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写出一个新的三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数按照第二步的规则继续操作,直至这个数不再变化为止.不管你开始写的是一个什么数,几步之后变成的自然数总是相同的,最后这个总相同的数就称为“黑洞数”.请你以2008为例尝试一下:第一步写出2008,第二步之后变为______,再变为______,再变为______,再变为______,再变为______,…所以这个数字游戏的“黑洞数”是______.

查看答案和解析>>

你玩过“数字黑洞”的游戏吗?“数字黑洞”,即满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.下面我们就来玩一种数字游戏,它可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写出一个新的三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数按照第二步的规则继续操作,直至这个数不再变化为止.不管你开始写的是一个什么数,几步之后变成的自然数总是相同的,最后这个总相同的数就称为“黑洞数”.请你以2008为例尝试一下:第一步写出2008,第二步之后变为 _________ ,再变为 _________ ,再变为 _________ ,再变为 _________ ,再变为 _________ ,…所以这个数字游戏的“黑洞数”是 _________

查看答案和解析>>

你玩过“数字黑洞”的游戏吗?“数字黑洞”,即满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.下面我们就来玩一种数字游戏,它可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写出一个新的三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数按照第二步的规则继续操作,直至这个数不再变化为止.不管你开始写的是一个什么数,几步之后变成的自然数总是相同的,最后这个总相同的数就称为“黑洞数”.请你以2008为例尝试一下:第一步写出2008,第二步之后变为________,再变为________,再变为________,再变为________,再变为________,…所以这个数字游戏的“黑洞数”是________.

查看答案和解析>>

我们知道两个一次函数y=k1x+b1,y=k2x+b2,当k1=k2时,这两个一次函数的图象相互平行,那么两个一次函数的图象什么情况下相互垂直呢?下面我们就来探索.
(1)画一画 
在同一平面直角坐标系下画出一次函数y=2x+1,y=-2x+3,y=
1
2
x-1,y=-
1
2
x+2的图象;
(2)想一想 
仔细观察图象,结合四个一次函数的解析式提出猜想:当
k1•k2=-1
k1•k2=-1
时,两个一次函数y=k1x+b1,y=k2x+b2的图象相互垂直;
(3)用一用 
利用(2)中的结论解决下面问题如图:已知正比例函数y=
1
2
x的图象和⊙P相切于点A,点P在x轴上,OP=3厘米,求⊙P的面积.

查看答案和解析>>


同步练习册答案