2.以下问题你能用同样的方法计算吗? 查看更多

 

题目列表(包括答案和解析)

小明同学学习了几何中的对称后,忽然想起了过去做过的一道题:有一组数排列成方阵如图所示,试计算这组数的和.小明想:方阵就像正方形,正方形既是轴对称图形,又是中心对称图形,能不能利用轴对称和中心对称的思想来解决方阵的计算问题呢?

小明试了试,竟然得到了非常巧妙的方法,你也能试试看吗?

从方阵上的数可以看出,一条对角线上的数都是5,若把这条对角线当做对称轴,把正方形翻折一下,对称位置的两数之和都是10(如图),这样方阵中数的和为(4+3+2+1)×10+5×5=125.于是原方阵中数的和为125.

也可以考虑,把方阵绕中心旋转180°,就得到另一方阵,再加到原来的方阵上去,就得到所有数是10的方阵(如图),这一方阵数的和为10×5×5=250.于是原方阵中数的和为=125.

查看答案和解析>>

  从前有个国王,他有三个儿子.大王子只喜欢读书,二王子只知道习武,小王子的兴趣十分广泛,爱读书,爱习武,还爱玩.

  有一天,国王对王子们说:“你们的祖父母去世早,你们可能都记不得他们的年龄了,谁能告诉我,你们的祖父母都活了多大岁数?”

  二王子问:“可以问您几个问题吗?”

  国王回答:“只能问一个.”

  “啊,问一个问题就猜到祖父母的年龄,太困难了,这恐怕连神仙也难办到!”大王子自言自语地说.

  国王又问小王子说:“你行吗?”小王子点了点头.大王子和二王子都很惊讶.

  小王子说:“请您把祖父的年龄放在前面、祖母的年龄放在后面,组成一个四位数,然后将这个四位数平方,接着减去祖母年龄的平方,然后除以祖父年龄的100倍,最后减去祖母的年龄,把所得的数告诉我.”

  国王不知道小王子想干什么,心算了一阵说:“得3129”.

  小王子马上答道:“祖父活到31岁,祖母活到29岁.”国王高兴地站起来说:“对极啦,就是这两个年龄!”“为什么让父王算一道题,就能把祖父母的年龄算出来呢?”“只许问一个问题,要猜出两人的年龄,还不能直接去问,你是怎样算的呢?”两位哥哥不停地问着小王子.

  小王子的妙算是让父王算出一个四位数,使得千位和百位上的数字与祖父的年龄有关;十位和个位上的数字与祖母的年龄有关.

  小王子的算法是:祖父的年龄放在前面、祖母的年龄放在后面组成的四位数是3129,将这个四位数平方,得9790641;减去祖母年龄的平方,得9789800;除以祖父年龄的100倍,得3158;最后减去祖母的年龄,得(31292-292)÷(31×100)-29=3129.

  大王子问:“为什么这样一定可以得到3129呢?”

小王子解释,可以利用整式的乘除的知识,把上面的算式以另一种方式做一下变形:

  [(31×100+29)2-292]÷3100-29=(312×1002+2×31×100×29+292-292)÷3100-29=(312×1002+2×31×100×29)÷3100-29=31×100+2×29-29=3129.

  原来小王子像魔术师变魔术一样,在计算中加了一点“伪装”,这就是“将四位数平方,减去祖母年龄的平方,除以祖父年龄的100倍,减去祖母的年龄”.其实这些步骤与计算祖父、祖母的年龄毫无关系,目的是使这种计算更隐蔽、更神秘(其实,我们只需根据由祖父、祖母年龄组成的四位数就可以知道祖父、祖母的年龄).

  同学们,你能通过整式的有关知识对小王子的算法作出解释吗?

查看答案和解析>>

我国著名数学家苏步青在访问德国时,德国一位数学家给他出了这样一道题目:
甲、乙二人相对而行,他们相距10千米,甲每小时走3千米,乙每小时走2千米,甲带着一条狗,狗每小时跑5千米,狗跑得快,它同甲一起出发,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去,问当甲、乙两人相遇时,这条狗一共跑了多少千米?
苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?
这道题最让人迷惑不解的是甲身边的那条狗.如果我们先计算狗从甲的身边跑到乙的身边的路程s,再计算狗从乙的身边跑到甲的身边的路程s,…,显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授从整体着眼,根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(小时),这样就不难求出狗一共跑的路程是:5×2=10(千米).
苏步青教授在解题时,把注意力和着眼点放在问题的整体结构上,从而能触及问题的实质:狗从出发到甲、乙两相遇所用的时间,恰好是甲、乙二人相遇所用的时间,从而使问题得到巧妙地解决.苏教授这种解决问题的思想方法实际上就是数学中的整体思想的应用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.在解二元一次方程组时,也要注意这种思想方法的应用.
比如解方程组数学公式
解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-数学公式
所以方程组的解为数学公式
同学们,你会用同样的方法解下面两个方程吗?试试看!
(1)数学公式(2)数学公式

查看答案和解析>>

我国著名数学家苏步青在访问德国时,德国一位数学家给他出了这样一道题目:
甲、乙二人相对而行,他们相距10千米,甲每小时走3千米,乙每小时走2千米,甲带着一条狗,狗每小时跑5千米,狗跑得快,它同甲一起出发,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去,问当甲、乙两人相遇时,这条狗一共跑了多少千米?
苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?
这道题最让人迷惑不解的是甲身边的那条狗.如果我们先计算狗从甲的身边跑到乙的身边的路程s,再计算狗从乙的身边跑到甲的身边的路程s,…,显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授从整体着眼,根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(小时),这样就不难求出狗一共跑的路程是:5×2=10(千米).
苏步青教授在解题时,把注意力和着眼点放在问题的整体结构上,从而能触及问题的实质:狗从出发到甲、乙两相遇所用的时间,恰好是甲、乙二人相遇所用的时间,从而使问题得到巧妙地解决.苏教授这种解决问题的思想方法实际上就是数学中的整体思想的应用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.在解二元一次方程组时,也要注意这种思想方法的应用.
比如解方程组
x+2(x+2y)=4
x+2y=1

把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程组的解为
x=2
y=-
1
2

同学们,你会用同样的方法解下面两个方程吗?试试看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>

我国著名数学家苏步青在访问德国时,德国一位数学家给他出了这样一道题目:
甲、乙二人相对而行,他们相距10千米,甲每小时走3千米,乙每小时走2千米,甲带着一条狗,狗每小时跑5千米,狗跑得快,它同甲一起出发,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去,问当甲、乙两人相遇时,这条狗一共跑了多少千米?
苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?
这道题最让人迷惑不解的是甲身边的那条狗.如果我们先计算狗从甲的身边跑到乙的身边的路程s,再计算狗从乙的身边跑到甲的身边的路程s,…,显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授从整体着眼,根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(小时),这样就不难求出狗一共跑的路程是:5×2=10(千米).
苏步青教授在解题时,把注意力和着眼点放在问题的整体结构上,从而能触及问题的实质:狗从出发到甲、乙两相遇所用的时间,恰好是甲、乙二人相遇所用的时间,从而使问题得到巧妙地解决.苏教授这种解决问题的思想方法实际上就是数学中的整体思想的应用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.在解二元一次方程组时,也要注意这种思想方法的应用.
比如解方程组
x+2(x+2y)=4
x+2y=1

解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程组的解为
x=2
y=-
1
2

同学们,你会用同样的方法解下面两个方程吗?试试看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>


同步练习册答案