2.探索活动 课本在“探索 中提出了2个问题.引导学生探索四边形是矩形的条件.教学中.要引导学生从矩形的概念出发加以探索. 对于“问题2 .课本通过卡通人给出了2个思路:一是由OA=OB=OC.得∠OAB=∠OBA.∠OBC=∠OCB.而∠OAB+∠OBA+∠OBC+∠OCB=180°.这样∠ABC=90°,二是由△ABC≌△DCB.得∠ABC=∠DCB.而∠ABC+∠DCB=180°.这样∠ABC=90°. 通过探索.得出判别四边形是矩形的条件后.应引导学生理解以下3点: (1)在判别四边形是矩形的条件中.矩形的概念是最基本的条件.其他的判别条件都是以它为基础的. (2)四边形只要有3个角是直角.那么根据多边形内角和性质.第四个角也一定是直角.在判别四边形是矩形的条件中.给出“有3个角是直角 的条件.是因为数学结论的表述中一般不给出多余条件. (3)将2个判别条件比较.前者的条件中.除了“有3个角是直角 的条件外.只要求是“四边形 .而后者的条件却包括“平行四边形 和“2条对角线相等 两个方面. 查看更多

 

题目列表(包括答案和解析)

在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示
(1)通过计算(结果保留根号与π),
  (Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 ______ cm;
  (Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 _______ cm;
  (Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 _______ cm;
(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.

查看答案和解析>>

(2013•莲湖区一模)在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:
(1)通过计算(结果保留根号与π).
(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为______

查看答案和解析>>

在一节数学实践活动课上,吕老师手拿着三个正方形硬纸板和几个不同的圆形的盘子,他向同学们提出了这样一个问题:已知手中圆盘的直径为13cm,手中的三个正方形硬纸板的边长均为5cm,若将三个正方形纸板不重叠地放在桌面上,能否用这个圆盘将其盖住?问题提出后,同学们七嘴八舌,经过讨论,大家得出了一致性的结论是:本题实际上是求在不同情况下将三个正方形硬纸板无重叠地适当放置,圆盘能盖住时的最小直径.然后将各种情形下的直径值与13cm进行比较,若小于或等于13cm就能盖住,反之,则不能盖住.吕老师把同学们探索性画出的四类图形画在黑板上,如下图所示.
精英家教网
(1)通过计算,在①中圆盘刚好能盖住正方形纸板的最小直径应为
 
cm.(填准确数)
(2)图②能盖住三个正方形硬纸板所需的圆盘最小直径为
 
cm图③能盖住三个正方形硬纸板所需的圆盘最小直径为
 
cm?(结果填准确数)
(3)按④中的放置,考虑到图形的轴对称性,当圆心O落在GH边上时,此时圆盘的直径最小.请你写出该种情况下求圆盘最小直径的过程.(计算中可能用到的数据,为了计算方便,本问在计算过程中,根据实际情况最后的结果可对个别数据取整数)
(4)由(1)(2)(3)的计算可知:A.该圆盘能盖住三个正方形硬纸板,B.该圆盘不能盖住三个正方形硬纸板.你的结论是
 
.(填序号)

查看答案和解析>>

在一节数学实践活动课上,吕老师手拿着三个正方形硬纸板和几个不同的圆形的盘子,他向同学们提出了这样一个问题:已知手中圆盘的直径为13cm,手中的三个正方形硬纸板的边长均为5cm,若将三个正方形纸板不重叠地放在桌面上,能否用这个圆盘将其盖住?问题提出后,同学们七嘴八舌,经过讨论,大家得出了一致性的结论是:本题实际上是求在不同情况下将三个正方形硬纸板无重叠地适当放置,圆盘能盖住时的最小直径.然后将各种情形下的直径值与13cm进行比较,若小于或等于13cm就能盖住,反之,则不能盖住.吕老师把同学们探索性画出的四类图形画在黑板上,如下图所示.

(1)通过计算,在①中圆盘刚好能盖住正方形纸板的最小直径应为______cm.(填准确数)
(2)图②能盖住三个正方形硬纸板所需的圆盘最小直径为______cm图③能盖住三个正方形硬纸板所需的圆盘最小直径为______cm?(结果填准确数)
(3)按④中的放置,考虑到图形的轴对称性,当圆心O落在GH边上时,此时圆盘的直径最小.请你写出该种情况下求圆盘最小直径的过程.(计算中可能用到的数据,为了计算方便,本问在计算过程中,根据实际情况最后的结果可对个别数据取整数)
(4)由(1)(2)(3)的计算可知:A.该圆盘能盖住三个正方形硬纸板,B.该圆盘不能盖住三个正方形硬纸板.你的结论是______.(填序号)

查看答案和解析>>

在一节数学实践活动课上,吕老师手拿着三个正方形硬纸板和几个不同的圆形的盘子,他向同学们提出了这样一个问题:已知手中圆盘的直径为13cm,手中的三个正方形硬纸板的边长均为5cm,若将三个正方形纸板不重叠地放在桌面上,能否用这个圆盘将其盖住?问题提出后,同学们七嘴八舌,经过讨论,大家得出了一致性的结论是:本题实际上是求在不同情况下将三个正方形硬纸板无重叠地适当放置,圆盘能盖住时的最小直径.然后将各种情形下的直径值与13cm进行比较,若小于或等于13cm就能盖住,反之,则不能盖住.吕老师把同学们探索性画出的四类图形画在黑板上,如下图所示.

精英家教网

(1)通过计算,在①中圆盘刚好能盖住正方形纸板的最小直径应为______cm.(填准确数)
(2)图②能盖住三个正方形硬纸板所需的圆盘最小直径为______cm图③能盖住三个正方形硬纸板所需的圆盘最小直径为______cm?(结果填准确数)
(3)按④中的放置,考虑到图形的轴对称性,当圆心O落在GH边上时,此时圆盘的直径最小.请你写出该种情况下求圆盘最小直径的过程.(计算中可能用到的数据,为了计算方便,本问在计算过程中,根据实际情况最后的结果可对个别数据取整数)
(4)由(1)(2)(3)的计算可知:A.该圆盘能盖住三个正方形硬纸板,B.该圆盘不能盖住三个正方形硬纸板.你的结论是______.(填序号)

查看答案和解析>>


同步练习册答案