证明:连接OQ. 能力提高 查看更多

 

题目列表(包括答案和解析)

如图直线y=-
12
x+2
分别交x轴、y轴于点A和B,点P(t,0)是x轴上一动点,P、Q两点关于直线AB轴对称,PQ交AB于点M,作QH⊥x轴于点H.
(1)求tan∠OAB的值;
(2)当QH=2时,求P的坐标;
(3)连接OQ,是否存在t的值,使△OQH与△APM相似?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

精英家教网如图,点P是x轴正半轴上一点,过点P作x轴的垂线交函数y=
2
x
于点Q,连接OQ,当点P沿x轴方向运动时,Rt△OPQ的面积(  )
A、逐渐增大B、逐渐变小
C、不变D、无法判断

查看答案和解析>>

(2013•沁阳市一模)以原点为圆心,1cm为半径的圆分别交x、y轴的正半轴于A、B两点,点P的坐标为(2,0).
(1)如图1,动点Q从点B处出发,沿圆周按顺时针方向匀速运动一周,设经过的时间为t秒,当t=1时,直线PQ恰好与⊙O第一次相切,连接OQ.求此时点Q的运动速度(结果保留);
(2)若点Q按照(1)中的方向和速度继续运动,
①当t为何值时,以O、P、Q为顶点的三角形是直角三角形;
②在①的条件下,如果直线PQ与⊙O相交,请求出直线PQ被⊙O所截的弦长.

查看答案和解析>>

精英家教网阅读材料,解答问题:
命题:如图,在锐角△ABC中,BC=a,CA=b,AB=c,△ABC的外接圆半径为R,则
a
sinA
=
b
sinB
=
c
sinC
=2R.
证明:连接CO并延长交⊙O于点D,连接DB,则∠D=∠A.
因为CD是⊙O的直径,所以∠DBC=90°,
在Rt△DBC中,sin∠D=
BC
DC
=
a
2R

所以sinA=
a
2R
,即
a
sinA
=2R,
同理:
b
sinB
=2R,
c
sinC
=2R,
a
sinA
=
b
sinB
=
c
sinC
=2R,
请阅读前面所给的命题和证明后,完成下面(1)(2)两题:
(1)前面阅读材料中省略了“
b
sinB
=2R,
c
sinC
=2R”的证明过程,请你把“
b
sinB
=2R”的证明过程补写出来.
(2)直接运用阅读材料中命题的结论解题,已知锐角△ABC中,BC=
3
,CA=
2
,∠A=60°,求△ABC的外接圆半径R及∠C.
精英家教网

查看答案和解析>>

(2013•永嘉县一模)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明:
猜想:
BE∥DF,BE=DF
BE∥DF,BE=DF

证明:
连接BD,交AC于点O,连接DE,BF.
∵四边形ABCD是平行四边形,
∴BO=OD,AO=CO,
又∵AF=CE,
∴AE=CF,
∴EO=FO,
∴四边形BEDF是平行四边形,
∴BE∥DF,BE=DF
连接BD,交AC于点O,连接DE,BF.
∵四边形ABCD是平行四边形,
∴BO=OD,AO=CO,
又∵AF=CE,
∴AE=CF,
∴EO=FO,
∴四边形BEDF是平行四边形,
∴BE∥DF,BE=DF

查看答案和解析>>


同步练习册答案