三角形的中位线:连接三角形两边中点的线段.叫做三角形的中位线. 查看更多

 

题目列表(包括答案和解析)

位似三角形

如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位

似中心.利用三角形的位似可以将一个三形缩小或放大.

(1)

如图,点O是等边三角形PQR的中心,分别是OP、OQ、OR的中点,则△与△PQR是位似三角形.此时,△与△PQR的位似比、位似中心分别为

[  ]

A.

2;点P

B.

;点P

C.

2;点O

D.

;点O

(2)

如图,用下面的方法可以画AOB的内接等边三角形.阅读后证明相应问题.画法:

①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;

②连结OE并延长,交AB于点,过点∥EC,交OA于点,作∥ED,交OB于点

③连结.则△是AOB的内接三角形.

求证:△是等边三角形.

查看答案和解析>>

是等边三角形,点是射线上的一个动点(点不与点重合),是以为边的等边三角形,过点的平行线,分别交射线于点,连接

(1)如图(a)所示,当点在线段上时,
①求证:
②探究:四边形是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点的延长线上时,
①第(1)题中所求证和探究的两个结论是否仍然成立?(直接写出,不必说明理由)
②当点运动到什么位置时,四边形是菱形?并说明理由.

查看答案和解析>>

是等边三角形,点是射线上的一个动点(点不与点重合),是以为边的等边三角形,过点的平行线,分别交射线于点,连接

(1)如图(a)所示,当点在线段上时,

     ①求证:

②探究:四边形是怎样特殊的四边形?并说明理由;

(2)如图(b)所示,当点的延长线上时,

①第(1)题中所求证和探究的两个结论是否仍然成立?(直接写出,不必说明理由)

②当点运动到什么位置时,四边形是菱形?并说明理由.

 

查看答案和解析>>

是等边三角形,点是射线上的一个动点(点不与点重合),是以为边的等边三角形,过点的平行线,分别交射线于点,连接

(1)如图(a)所示,当点在线段上时,
①求证:
②探究:四边形是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点的延长线上时,
①第(1)题中所求证和探究的两个结论是否仍然成立?(直接写出,不必说明理由)
②当点运动到什么位置时,四边形是菱形?并说明理由.

查看答案和解析>>

是等边三角形,点是射线上的一个动点(点不与点重合),是以为边的等边三角形,过点的平行线,分别交射线于点,连接

(1)如图(a)所示,当点在线段上时.

   ①求证:

②探究四边形是怎样特殊的四边形?并说明理由;

(2)如图(b)所示,当点的延长线上时,直接写出(1)中的两个结论是否成立?

(3)在(2)的情况下,当点运动到什么位置时,四边形是菱形?并说明理由.


查看答案和解析>>


同步练习册答案