本课的问题情境设置富有挑战性.在利用观看一段篮球视频后提出问题而导入新课.将课堂教学围绕在“临安横畈中学初三(2)班的同学们打算在周末外出游玩一天 这一条线.这样设计不仅使学生的思路清晰而且更能引起学生的兴趣,整个教学过程设计的问题都与生活紧密联系(如家庭出行旅游时.旅行社的选择.出行时天气的好坏.购物时物品的选择等等).体现了新课程应用数学的意识.使学生感受到知识来源于生活又应用于生活.另外.本课采用多种教学手段.师生互动.注重学法指导及学生能力的培养.寓教于乐.达到了预期的教学目标. 查看更多

 

题目列表(包括答案和解析)

请耐心阅读,然后解答后面的问题:
上周末,小明在书城随手翻阅一本高中数学参考书时,无意中看到了几个等式:sin51°cos12°+cos51°sin12°=sin63°,sin25°cos76°+cos25°sin76°=sin101°.一个猜想出现在他脑海里,回家后他马上用科学记算器进行验证,发现自己的猜想成立,并能推广到一般.其实这是大家将在高中学的一个三角函数知识.你是否和小明一样也有想法了?下面考考你,看你悟到了什么:
①根据你的猜想填空:sin37°cos48°+cos37°sin48°=
sin120°
sin120°
,sinαcosβ+cosαsinβ=
sin(α+β)
sin(α+β)

②尽管75°角不是特殊角,请你用发现的规律巧算出sin75°的值.

查看答案和解析>>

(2013•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:
①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;
②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;
③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.
其中,符合图中所示函数关系的问题情境的个数为(  )

查看答案和解析>>

问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)
特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.
归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.

查看答案和解析>>

如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:

①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;

②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;

③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=SABP;当点P与点A重合时,y=0.

其中,符合图中所示函数关系的问题情境的个数为

A.0       B.1       C.2       D.3

 

查看答案和解析>>

问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);

  特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC, CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;

  归纳证明:如图③,点BC在∠MAN的边AM、AN上,点EF在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC, ∠1=∠2=∠BAC.求证:△ABE≌△CAF;

  拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为             .(12分)

 

查看答案和解析>>


同步练习册答案