回顾反思: (1)把实际问题抽象为数学问题.再从数学问题到列出方程.关键在于弄清题意.恰当地巧设未知数.找出问题中的相等关系. (2)设元设得巧.方程列得妙,设元设得好.方程列的得快.一般问什么则设什么.有时设未知的另一个量来求也较方便. (3)解题时.找出问题中的相等关系.要深刻理解题意.把握题中隐含条件及内在联系(如题中等量关系语句.量与量之间的关系). (4)学有余力的同学鼓励其解方程.对一般同学不作要求. 查看更多

 

题目列表(包括答案和解析)

某班同学“五•一”期间组织外出爬山活动,花了230元租了一辆客车,如果参加活动的同学每人交7元租车费还不够,你明白这句话的含义吗?
典例分析:
例1在公路上,我们可以看到以下几种交通标志(如图),它们有着不同的意义.如果设汽车载重量为x吨,宽度为k米,高度为h米,速度为y千米/时,请你用不等式表示下列各种标志的意义.
精英家教网

思路分析:由题意可知,限重、限宽、限高、限速中的“限”字的意义就是不超过,也就是“≤”的意义.这样,该题即可迎刃而解.
解:x≤5.5   k≤2   h≤3.5   y≤30
方法点拨:生活中的各种标志图、徽标等信息,现已成为考试中的一种素材,解决这类题目,需要将信息转化为数学语言,比如将“大于”“超过”“不超过”“非负数”“不大于”等等,准确“翻译”为数学符号.通过本题可以使我们认识到关注身边的数学的重要性.
例2用适当的不等式表示下列关系:
(1)x的4倍与2的和是非负数,可表示为
 

(2)育才中学七年级一班学生数不到35人,设该班学生有x人,可表示为
 

(3)人的寿命可超过120岁.设人的寿命为x岁,则可表示为
 

(4)小林家有4口人,人均住房面积不足15平方米,则小林家的总住面积y平方米可表示为
 

思路分析:(1)中的“非负数”即“≥0”的数;(2)中的“不到”即“<”的意思;(3)中的“超过”即“>”的意思;(4)中的“不足”即“<”的意思.
答案:(1)4x+2≥0  (2)x<35  (3)x>120  (4)y<60
方法点拨:做这种类型的题时,要善于把实际问题中的一些“不到”“大于”“超过”“不小于”等数学术语,准确迅速地转化为数学符号.此类题是为学生以后列不等式解应用题做铺垫的,所以必须掌握好.

查看答案和解析>>

精英家教网如图,是一个实际问题抽象的几何模型,已知A、B之间的距离为300m,求点M到直线AB的距离.(精确到整数)(参考数据:
3
≈1.7,
2
≈1.4)

查看答案和解析>>

精英家教网如图所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P、Q分别从A、B同时出发,几秒钟后P、Q间的距离等于2
5
厘米?(把实际问题转化为几何问题)

查看答案和解析>>

如图所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P、Q分别从A、B同时出发,几秒钟后P、Q间的距离等于2厘米?(把实际问题转化为几何问题)

查看答案和解析>>

如图,是一个实际问题抽象的几何模型,已知A、B之间的距离为300m,求点M到直线AB的距离.(精确到整数)(参考数据:≈1.7,≈1.4)

查看答案和解析>>


同步练习册答案