(2)若数列{an}满足.且a1=4.求数列{an}的通项公式, 查看更多

 

题目列表(包括答案和解析)

数列{an}的首项a1=1,前n项和Sn满足2kSn-(2k+1)Sn-1=2k(常数k>0,n=2,3,4…)

(Ⅰ)求证:数列{an}是等比数列;

(Ⅱ)设数列{an}的公比为f(k),作数列{bn},使b1=3,bn=f()(n=2,3,4,…)求数列{bn}的通项公式;

(Ⅲ)设cn=bn-2,若存在m∈N*,且m<n;使(cmcm+1+cm+lcm+2+…+cncn+1)<,试求m的最小值.

查看答案和解析>>

在数列{an}中,若a1,a2是正整数,且an=|an-1-an-2|,n=3,4,5,…,则称{an}为“绝对差数列”.
(Ⅰ)举出一个前五项不为零的“绝对差数列”(只要求写出前十项);
(Ⅱ)若“绝对差数列”{an}中,a20=3,a21=0,数列{bn}满足bn=an+an+1+an+2,n=1,2,3,…,分别判断当n→∞时,an与bn的极限是否存在,如果存在,求出其极限值;
(Ⅲ)证明:任何“绝对差数列”中总含有无穷多个为零的项.

查看答案和解析>>

设数列{an},{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}(n∈N+)是等差数列,数列{bn-2}(n∈N+)是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)是否存在k∈N+,使ak-bk∈(0,
12
)
,若存在,求出k,若不存在,说明理由.

查看答案和解析>>

设数列{an}的前n项和为Sn,数列{bn}满足:bn=nan,且数列{bn}的前n项和为(n-1)Sn+2n(n∈N*).
(1)求a1,a2的值;
(2)求证:数列{Sn+2}是等比数列;
(3)抽去数列{an}中的第1项,第4项,第7项,…,第3n-2项,…余下的项顺序不变,组成一个新数列{cn},若{cn}的前n项和为Tn,求证:
12
5
Tn+1
Tn
11
3

查看答案和解析>>

设数列{an}满足:an(n∈N*)是整数,且an+1-an是关于x的方程x2+(an+1-2)x-2an+1=0的根.
(1)若a1=4且n≥2时,4≤an≤8求数列{an}的前100项和S100
(2)若a1=-8,a6=1且an<an+1(n∈N*)求数列{an}的通项公式.

查看答案和解析>>


同步练习册答案