l:x=2的距离之比为, (1)求双曲线的标准方程 (2)设过点F的直线交动点M的轨迹于A.B两点.且线段AB中点在直线x+y=0上. 求AB的方程. 参 考 答 案 一.ADDBC ADBCB AC二. 查看更多

 

题目列表(包括答案和解析)

以下五个关于圆锥曲线的命题中:
①平面内到定点A(1,0)和定直线l:x=2的距离之比为
1
2
的点的轨迹方程是
x2
4
+
y2
3
=1

②点P是抛物线y2=2x上的动点,点P在y轴上的射影是M点A的坐标是A(3,6),则|PA|+|PM|的最小值是6;
③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;
④若动点M(x,y)满足
(x-1)2+(y+2)2
=|2x-y-4|
,则动点M的轨迹是双曲线;
⑤若过点C(1,1)的直线l交椭圆
x2
4
+
y2
3
=1
于不同的两点A,B,且C是AB的中点,则直线l的方程是3x+4y-7=0.
其中真命题的序号是
 
.(写出所有真命题的序号)

查看答案和解析>>

(12分)已知动点P到定点F (, 0 ) 的距离与点 P 到定直线 l:x=2 的距离之比为

(1)求动点P的轨迹C的方程;

(2)设M、N是直线l上的两个点,点E是点F关于原点的对称点,若·=0,

    求 | MN | 的最小值。

 

查看答案和解析>>

(12分)已知动点P到定点F (, 0 ) 的距离与点 P 到定直线 l:x=2 的距离之比为

(1)求动点P的轨迹C的方程;

(2)设M、N是直线l上的两个点,点E是点F关于原点的对称点,若·=0,

    求 | MN | 的最小值。

 

查看答案和解析>>

如图,椭圆的中心为原点0,离心率e=,一条准线的方程是x=2
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:=+2,其中M、N是椭圆上的点,直线OM与ON的斜率之积为-
问:是否存在定点F,使得|PF|与点P到直线l:x=2的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.

查看答案和解析>>

以下五个关于圆锥曲线的命题中:
①平面内到定点A(1,0)和定直线l:x=2的距离之比为的点的轨迹方程是
②点P是抛物线y2=2x上的动点,点P在y轴上的射影是M点A的坐标是A(3,6),则|PA|+|PM|的最小值是6;
③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;
④若动点M(x,y)满足,则动点M的轨迹是双曲线;
⑤若过点C(1,1)的直线l交椭圆于不同的两点A,B,且C是AB的中点,则直线l的方程是3x+4y-7=0.
其中真命题的序号是    .(写出所有真命题的序号)

查看答案和解析>>


同步练习册答案