今天这节课.我们一起学习了几何体的三视图.你会画一个几何体的三视图吗?对于画几何体的三视图.你还有什么问题和困难吗? 查看更多

 

题目列表(包括答案和解析)

认真阅读材料,然后回答问题:
我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…
下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数是可以单独列成表中的形式:

上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:
(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;
(2)请你预测一下多项式(a+b)n展开式的各项系数之和.
(3)结合上述材料,推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).

查看答案和解析>>

我们已经学习了有理数的乘方,根据幂的意义知道107就是7个10连乘.35被是5个3连乘,那么我们怎样计算107×102,35×33呢?
我们知道107=10×10×10×10×10×10×10102═10×10
所以107×102=(10×10×10×10×10×10×10)×(10×10)
=10×10×10×10×10×10×10×10×10;
=109
同理35×33=(3×3×3×3×3)×(3×3×3)
=3×3×3×3×3×3×3×3=38
再如a3•a2=(aaa)•(aa)=a•a•a•a•a=a5
也就是107×102=109,35×33=38,a3•a2=a5
观察上面三式等号左端两个幂的指数和右端的底数与指数.你会发现每个等式左端两个幂的底数
相同
相同
.右端幂的底数与左端两个幂的底数
相同
相同
.左端两个幂的指数的与右端幂的指数相等.由此你认为am•an=
am+n
am+n

查看答案和解析>>

认真阅读材料,然后回答问题:
我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…
下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数是可以单独列成表中的形式:

上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:
(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;
(2)请你预测一下多项式(a+b)n展开式的各项系数之和.
(3)结合上述材料,推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).

查看答案和解析>>

认真阅读材料,然后回答问题:
我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…
下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数是可以单独列成表中的形式:

上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:
(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;
(2)请你预测一下多项式(a+b)n展开式的各项系数之和.
(3)结合上述材料,推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).

查看答案和解析>>

认真阅读材料,然后回答问题:
我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…
下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数是可以单独列成表中的形式:

上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:
(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;
(2)请你预测一下多项式(a+b)n展开式的各项系数之和.
(3)结合上述材料,推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).

查看答案和解析>>


同步练习册答案