教学方法:采用探究性教学法和启发式教学法.以启发.引导为主.采用设疑的形式.逐步让学生进行探险究性的学习.充分利用了青少年富有创造性和好奇心的特点.仔细观察.大胆表述.自觉主动地去发现问题.分析问题.讨论问题.最终解决问题. 教学手段:根据教学内容.采用投影.计算机辅助课堂教学.创设生动.直观的教学情境.帮助学生理解重点.降低难点. 教学媒体及工具:电脑.投影仪.长方体.圆柱.四棱锥等模型. 查看更多

 

题目列表(包括答案和解析)

探究题:
数学问题:各边长都是整数,最大边长为21的三角形有多少个?
为解决上面的数学问题,我们先研究下面的数学模型:
数学模型:在1~21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,有多少种不同取法?
为找到解决问题的方法,我们把上面数学模型简单化.
(1)在1~4这4个自然数中,每次取两个不同的数,使得所取的两个数之和大于4,有多少种取法?
根据题意,有下列取法:1+4,2+3,2+4,3+2,3+4,4+1,4+2,4+3,而1+4与4+1,2+3与3+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+2+3
2
=4=
42
4
种不同的取法.
(2)在1~5这5个自然数中,每次取两个不同的数,使得所取的两个数之和大于5,有多少种取法?
根据题意,有下列取法:1+5,2+4,2+5,3+4,3+5,4+2,4+3,4+5,5+1,5+2,5+3,5+4,而1+5与5+1,2+4与4+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+2+3+4
2
=6=
52-1
4
种不同的取法.
(3)在1~6这6个自然数中,每次取两个不同的数,使得所取的两个数之和大于6,有多少种不同的取法?
根据题意,有下列取法:1+6,2+5,2+6,3+4,3+5,3+6,4+3,4+5,4+6,5+2,5+3,5+4,5+6,6+1,6+2,6+3,6+4,6+5,而1+6与6+1,2+5与5+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+3+3+4+5
2
=9=
62
4
种不同的取法.
(4)在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,有多少种取法?
根据题意,有下列取法:1+7,2+6,2+7,3+5,3+6,3+7,4+5,4+6,4+7,5+3,5+4,5+6,5+7,6+2,6+3,6+4,6+5,6+7,7+1,7+2,7+3,7+4,7+5,7+6,而1+7与7+1,2+6与6+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+3+3+4+5+6
2
=12=
72-1
4
种不同的取法…
问题解决
仿照上述研究问题的方法,解决上述数学模型和提出的问题
(1)在1~21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,共有
 
种不同取法;(只填结果)
(2)在1~n(n为偶数)这n个自然数中,每次取两个数,使得所取的两个数字之和大于n,共有
 
种不同取法;(只填最简算式)
(3)在1~n(n为奇数)这n个自然数中,每次取两个数,使得所取的两个数之和大于n,共有
 
种不同取法;(只填最简算式)
(4)各边长都是整数且不相等,最大边长为21的三角形有多少个?(写出最简算式和结果,不写分析过程)

查看答案和解析>>

32、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这两种卡租一本书,租书金额y(元)与租书时间x(天)之间的关系如图所示.根据图中提供的信息回答下列问题:
(1)办理会员卡需要
20
元入会费?
(2)两种租书方式每天租书的收费分别是多少元?
(3)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式.
(4)若两种租书卡的使用期限均为一年,则在这一年中如果租书时间累计为80天,请你通过图象和计算两种方法说明采用哪种租书方式比较划算?

查看答案和解析>>

初步探索 感悟方法
如图1用水平线和竖直线将平面分成若干个面积为1的小正方形格子,小正方形的顶点为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.

(1)上图中的格点多边形,其内部都只有1个格点,它们的面积S与各边上格点的个数和x的对应关系如下表:
序号
S 2 2.5 3 4
x 4 5 6 8
请用含x的代数式表示S,即S=
1
2
x
1
2
x

(2)进一步探索:你可以画出一些格点多边形,使这些多边形内部有而且只有2个格点,在这种情况下,用含x的代数式表示S,即S=
1
2
x+1
1
2
x+1

(3)请你继续探索并归纳:当格点多边形内部有且只有n个格点时,直接写出S与x之间的关系式.
积累经验 拓展延伸
如图2,对等边三角形网格中的类似问题进行探究:等边三角形网格中每个小等边三角形的面积为1,小等边三角形的顶点为格点,以格点为顶点的多边形称为格点多边形.
(4)设格点多边形的面积为S,它各边上格点的个数和为x,当格点多边形内部有且只有n个格点时,直接写出S与x之间的关系式.

查看答案和解析>>

18、九年级数学教师将相关教学方法作为调查内容发到全年级500名学生的手中,要求每位学生选出自己喜欢的一种,调查结果如下列统计图所示:

(1)请你将扇形统计图和条形统计图补充完整;
(2)写出学生喜欢的教学方法的众数;
(3)针对调查结果,请你发表不超过30字的简短评说.

查看答案和解析>>


同步练习册答案