(3)单调增区间: 查看更多

 

题目列表(包括答案和解析)

用函数单调性的定义证明:f(x)=
x-1x+3
在区间(-∞,-3)上是增函数.

查看答案和解析>>

某空调器厂为了规范其生产的空调器的市场营销,在一个地区指定一家总经销商,规定经总销商之间不得“串货”(即一个地区的总经销商不得向其他地区销售该品牌空调器).经空调器厂和各地区总经销商联合市场调查,预计今年的七月份(销售旺季),市场将需求售价为1800元/台的P型空调器200万台,但该厂的生产能力只有150万台.为了获得足够的资金组织生产,该空调器厂规定,每年的销售旺季前预付货款的总经销商在旺季将获得供货优待.以东部地区为例,今年的7月份市场将需求P型空调器10万台,如果东部地区的总经销商在2月1日将10万台P型空调器的货款全部付清,空调器厂按1500元/台的价格收取货款,并在7月1日保证供货;每推迟一个月打入货款,每台空调器的价格将增加6元,并且供货量将减少2%.已知银行的月利率为0.5%.
(I)就P型空调器的进货单价而言,总经销商在2月1日和7月1日打入货款,哪个划算?
(II)就东部地区经销P型空调器而言,总经销商在2月1日和7月1日打入货款,哪个划算?
(III)东部地区的小王7月1日用分期付款的方式购买了1台P型空调器,如果采用每月“等额还款”的方式从7月1日开始分6次付清,小王每一次的付款额约是多少?
(以下数据仅供参考:1.0054=1.020151,1.0055=1.025251,1.0056=1.030378,0.985=0.903921,0.986=0.885842,0.987=0.868126)

查看答案和解析>>

定义在区间(0,)上的函f(x)满足:(1)f(x)不恒为零;(2)对任何实数x、q,都有.

(1)求证:方程f(x)=0有且只有一个实根;

(2)若a>b>c>1,且a、b、c成等差数列,求证:

(3)(本小题只理科做)若f(x) 单调递增,且m>n>0时,有,求证:

查看答案和解析>>

用函数单调性的定义证明:f(x)=在区间(-∞,-3)上是增函数.

查看答案和解析>>

定义在区间(0,)上的函f(x)满足:(1)f(x)不恒为零;(2)对任何实数x、q,都有.
(1)求证:方程f(x)=0有且只有一个实根;
(2)若a>b>c>1,且a、b、c成等差数列,求证:
(3)(本小题只理科做)若f(x) 单调递增,且m>n>0时,有,求证:

查看答案和解析>>


同步练习册答案