2.一条线段的n等分点有n个. ( ) 查看更多

 

题目列表(包括答案和解析)

给出以下判断:
(1)线段的中点是线段的重心
(2)三角形的三条中线交于一点,这一点就是三角形的重心
(3)平行四边形的重心是它的两条对角线的交点
(4)三角形的重心是它的中线的一个三等分点。那么以上判断中正确的有
[     ]
A.一个
B.两个
C.三个
D.四个

查看答案和解析>>

已知:∠AOB=90,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E。
(1)当三角板绕点C旋转到CD与OA垂直,CE与OB垂直时,(如图1) 此时由角平分线的性质可知CE=CD,又∵OM平分直角AOB,∴∠DOC=∠EOC=45,∴△DCO与△ECO都为等腰直角三角形。∴OE=CE, OD=CD,又∵CE=CD,∴OE=OD=CD,请在此基础上继续证明:
 (2)当三角板绕点C旋转到CD与OA不垂直时(如图2),上述结论是否还成立?试说明理由。
(3)当三角板绕点C旋转到图3位置上时,上述结论还成立吗?若不成立,请写出线段OD, OE, OC之间的关系。

查看答案和解析>>

)如图1RtABCAB = AC,点DE是线段AC上两动点,且AD = ECAMBD,垂足为MAM的延长线交BC于点N,直线BD与直线NE相交于点F。试判断△DEF的形状,并加以证明。

说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写

3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。

注意:选取①完成证明得10分;选取②完成证明得5分。

①画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;

②点K在线段BD上,且四边形AKNC为等腰梯形(ACKN,如图2)。

附加题:如图3,若点DE是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由。

查看答案和解析>>

操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN。
探究:线段BM、MN、NC之间的关系,并加以证明。
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
①AN=NC(如图②);
②DM∥AC(如图③)。
附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由。

查看答案和解析>>

在等边△ABC中,点D为AC上一点,连结BD,直线l与线段BA、BD、BC分别相交于点E、P、F,且∠BPF=60°。
(1)如图1,写出图中所有与△BDC相似的三角形,并选择其中一对给予证明;
(2)若直线向右平移,与线段BA、BD、BC或其延长线分别相交于E、P、F,请在图2中画出一个与图1位置不尽相同的图形(其它条件不变),此时,(1)中的结论是否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由;
(3)探究:如图1,当BD满足什么条件时(其它条件不变),△BPE的面积是△BPF的面积的2倍?请写出探究结果,并说明理由。(说明:结论中不得含有未标识的字母)

查看答案和解析>>


同步练习册答案