14.如图7.∠A=∠ABC=∠ACB=60°.延长AC交直线MN于E.作ED⊥BC.垂足为D.请你找出图中5对互余的角和5对互补的角. 查看更多

 

题目列表(包括答案和解析)

14、(一题多解)如图所示,△ABC与△A′B′C′关于点O中心对称,但点O不慎被涂掉了,请你帮排版工人找到对称中心O的位置.

查看答案和解析>>

如图,已知:AC⊥AB,BD⊥AB,且AC=BE,AE=BD,求证:△CDE是等腰直角三角形.
证明:∵AC⊥AB,BD⊥AB∴∠CAE=∠DBE=90°
∵AC=BE,AE=BD∴△ACE≌△BED
∴CE=DE且∠ACE=∠BED
∵∠ACE+∠AEC=90°∴∠AEC+∠BED=90°
∴∠CED=90°∴△CED为等腰直角三角形
利用上题的解题思路解答下列问题:
在Rt△ABC中,∠C=90°,D,E分别为CB,CA延长线上的点,BE与AD的交点为P.
(1)若BD=AC,AE=CD,在下图中画出符合题意的图形,求出∠APE的度数;
(2)若AC=
3
BD,CD=
3
AE,则∠APE=
 
°.
精英家教网

查看答案和解析>>

甲题:已知x1、x2是关于x的一元二次方程x2-2x+a-1=0的两个实数根
(1)若x1+2x2=3-
2
,求x1、x2及a的值;
(2)若s=ax1x2+3x1+3x2-3a,求s的取值范围.
乙题:如图,在Rt△ABC中,∠C=90°,AC:AB=
3
:2

(1)求BC:AC的值;
(2)延长CB到点D,使DB:DC=2:3,连接AD.
①求∠D的度数;②若AD=12,求△ABC三边的长.
解:我选做
题.

查看答案和解析>>

作图题:
(1)如图,已知△ABC,用直尺和圆规作一个△A′B′C′,使得AB=A′B′,BC=B′C′,AC=A′C′.(只要求画出图形,并保留作图痕迹)
(2)在△ABC和△A′B′C′中,画出AB边上的高线CD和A′B′边上的高线C′D′.(作图工具不限,不写作法)
(3)根据(1)(2)画出的图形说明CD=C′D′的理由.
(4)根据CD=C′D′,请用一句话归纳出一个结论.
精英家教网

查看答案和解析>>

数学活动课上,甲、乙两位同学在研究一道数学题:“已知:如图1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.试画直线m,l,使直线m将△ABC分成的两个小三角形与直线l将△DEF分成的两个小三角形分别相似,并标出每个小三角形各内角的度数.”
甲同学是这样做的:如图2,使得两个直角三角形的斜边重合,以斜边中点0为圆心,OB长为半径作出辅助圆,根据到定点的距离等于定长的点在圆上,可知A、B(E)、C(F)、D在⊙0上.设BD所在的直线m与AC所在的直线l交于点G,根据同弧所对的圆周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,从而△AGB∽△DGF.△GBC∽△GEF.
乙同学在甲同学的启发下,利用辅助圆又补充了其它分割方法.
你看明白甲同学的分割方法了吗?请你仿照甲同学的方法,把这道题其它的所有分割方法补充完整.
要求:不需写解答过程.如图2所示.利用辅助圆画出示意图,标明直线及每个小三角形各内角的度数即可.

查看答案和解析>>


同步练习册答案