归纳平行公理推论. (1)学生直观判定过B点.C点的a的平行线b.c是互相平行. (2)从直线b.c产生的过程说明直线b∥直线c. (3)学生用三角尺与直尺用平推方验证b∥c. (4)师生用数学语言表达这个结论,教师板书. 结果两条直线都与第三条直线平行,那么这条直线也互相平行. 结合图形,教师引导学生用符号语言表达平行公理推论: 如果b∥a,c∥a,那么b∥c. (5)简单应用. 练习:如果多于两条直线,比如三条直线a.b.c与直线L都平行, 那么这三条直线互相平行吗?请说明理由. 本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范. 查看更多

 

题目列表(包括答案和解析)

两条直线平行的条件( 除平行线定义和平行公理推论外) :
(1) 两条直线被第三条直线所截,如果____________ ,那么这两条直线平行。这个判定方法1 可简述为:____________ ,两直线平行。
(2)两条直线被第三条直线所截,如果____________ ,那么____________ 。这个判定方法2 可简述为:____________ ,____________ 。
(3)两条直线被第三条直线所截,如果____________ ,那么____________ 。这个判定方法3 可简述为:____________ ,____________ 。

查看答案和解析>>

若直线a∥b,b∥c,则a∥c的依据为


  1. A.
    平行公理
  2. B.
    等量代换
  3. C.
    平行公理推论
  4. D.
    平行线的定义

查看答案和解析>>


⑴ 在同一平面内,__的两条直线叫做平行线.若直线__ 与直线 __平行,则记作_.
⑵ 在同一平面内,两条直线的位置关系只有_____、_____.
⑶ 平行公理是:____________________________________________.
⑷ 平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.
⑸ 已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.

⑴∵ ∠B=∠3(已知),∴______∥______.(______,______)
⑵∵∠1=∠D (已知),∴______∥______.(______,______)
⑶∵∠2=∠A (已知),∴______∥______.(______,______)
⑷∵∠B+∠BCE=180° (已知),∴______∥______.(______,______)

查看答案和解析>>


⑴ 在同一平面内,__的两条直线叫做平行线.若直线__ 与直线 __平行,则记作_.
⑵ 在同一平面内,两条直线的位置关系只有_____、_____.
⑶ 平行公理是:____________________________________________.
⑷ 平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.
⑸ 已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.

⑴∵ ∠B=∠3(已知),∴______∥______.(______,______)
⑵∵∠1=∠D (已知),∴______∥______.(______,______)
⑶∵∠2=∠A (已知),∴______∥______.(______,______)
⑷∵∠B+∠BCE=180° (已知),∴______∥______.(______,______)

查看答案和解析>>

18、某工程队,在修建兰宁高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程(  )

查看答案和解析>>


同步练习册答案