2.能结合具体情境理解一次函数和正比例函数的意义. 查看更多

 

题目列表(包括答案和解析)

已知:关于x的一元二次方程kx2+(2k-3)x+k-3=0(k<0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别是x1,x2(其中x1>x2),若一次函数y=(3k-1)x+b与正比例函数y=2kx的图象都经过点P(x1,kx2),求一次函数和正比例函数的解析式.

查看答案和解析>>

已知:关于x的一元二次方程kx2+(2k-3)x+k-3=0(k<0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别是x1,x2(其中x1>x2),若一次函数y=(3k-1)x+b与正比例函数y=2kx的图象都经过点P(x1,kx2),求一次函数和正比例函数的解析式.

查看答案和解析>>

写出一次函数和正比例函数的表达式,并指出它们的区别和联系.

 

查看答案和解析>>

已知,正比例函数y=ax图象上的点的横坐标与纵坐标互为相反数,反比例函数y=
kx
在每一象限内y随x的增大而增大,一次函数y=k2x-k-a+4过点(-2,4).
(1)求a的值;
(2)求一次函数和反比例函数的解析式.

查看答案和解析>>

(2012•西城区模拟)探索一个问题:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”
(1)完成下列空格:
当已知矩形A的边长分别为6和1时,小明是这样研究的:设所求矩形的一边是x,则另一边为(
7
2
-x),由题意得方程:x(
7
2
-x)=3,化简得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=
2
2
,x2=
3
2
3
2

∴满足要求的矩形B存在.
小红的做法是:设所求矩形的两边分别是x和y,由题意得方程组:
x+y=
7
2
xy=3
消去y化简后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的边长分别为2和1,请你仿照小明或小红的方法研究是否存在满足要求的矩形B.
(3)在小红的做法中,我们可以把方程组整理为:
y=
7
2
-x
y=
3
x
,此时两个方程都可以看成是函数解析式,从而我们可以利用函数图象解决一些问题.如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x和y分别表示矩形B的两边长,请你结合刚才的研究,回答下列问题:(完成下列空格)
①这个图象所研究的矩形A的面积为
8
8
;周长为
18
18

②满足条件的矩形B的两边长为
9+
17
4
9+
17
4
9-
17
4
9-
17
4

查看答案和解析>>


同步练习册答案