课堂小结 作业 课本第130页习题 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,这是我国古代一个数学家构造的“勾股圆方图”(见课本第76页),他第一个利用此图证明了“勾股定理”.这个数学家是(  )
A、祖冲之B、杨辉C、赵爽D、华罗庚

查看答案和解析>>

下列说法:
6
是二次根式,但不是整式;
②方程x2-x-k=0的根为x1,2=
1+4k
2

③若ac<0,则方程ax2+bx+c=0方程必有实数根;
④课本第54页观察与猜想讨论了一元二次方程根与系数的关系,根据这一关系得方程x2-3x+5=0的两根和是3,两根积是5.
其中错误的有(  )

查看答案和解析>>

下列说法:
6
是二次根式,但不是整式;
②方程3x2-
2
x
=0
是一元二次方程;
③若ac<0,则方程ax2+bx+c=0必有两个不相等的实数根;
④数学课本第40页观察与猜想讨论了一元二次方程根与系数的关系,根据这一关系得方程x2-3x+5=0的两根和是3,两根积是5.
其中错误的有(  )

查看答案和解析>>

下列说法:
6
是二次根式,但不是整式;
②方程3x2-
2
x
=0
是一元二次方程;
③若ac<0,则方程ax2+bx+c=0必有两个不相等的实数根;
④数学课本第40页观察与猜想讨论了一元二次方程根与系数的关系,根据这一关系得方程x2-3x+5=0的两根和是3,两根积是5.
其中错误的有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

阅读下面材料,按要求完成后面作业.

  三角形内角平分线性质定理:三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例.

已知:△ABC中,AD是角平分线(如图).

求证:.

  分析:要证,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在的三角形相似,现在B、D、C在一条直线,△ABD与△ADC不相似,需要考虑用别的方法换比.

在比例式中,AC恰好是BD、DC、AB的第四比例项,所以考虑过C作CE∥AD交BA的延长线于E,从而得到BD、DC、AB的第四比例项AE,这样,证明,就可转化证.

  1.完成证明过程:

证明:

  2.上述证明过程中,用到了哪些定理(写对两个即可)

  答:用了:①

          ②

  3.在上述分析和你的证明过程中,主要用到了下列三种数学思想的哪一种,①数形结合思想  ②转化思想  ③分类讨论思想

  答:

  4.用三角形内角平分线定理解答问题:

  如图,△ABC中,AD是角平分线,AB=5cm,AC=4cm,BD=7cm,求BD之长.

查看答案和解析>>


同步练习册答案