(一).情境引入 动手:(1)将一个长方体的纸盒展开成平面图形 (2)将一个圆柱体的侧面展开后是一个怎样的图形? (3)将一个圆锥的侧面展是一个怎样的图形呢? 查看更多

 

题目列表(包括答案和解析)

1、下列说法:(1)中心对称与中心对称图形是两个不同的概念,它们既有区别,又有联系;(2)中心对称图形是指两个图形之间的一种对称关系;(3)中心对称和中心对称图形有一个共同的特点是它们都有且只有一个对称中心;(4)任何一条经过对称中心的直线都将一个中心对称图形分成两个大小相同的图形,其中说法正确的序号是(  )

查看答案和解析>>

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如精英家教网下一个正确结论(或结果):
甲:△AEF的边AE=
 
cm,EF=
 
cm;
乙:△FDM的周长为16cm;
丙:EG=BF.
你的任务:
(1)填充甲同学所得结果中的数据;
(2)写出在乙同学所得结果的求解过程;
(3)当点F在AD边上除点A、D外的任何一处(如图2)时:
①试问乙同学的结果是否发生变化?请证明你的结论;
②丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>

1、若两个图形关于某一点成中心对称,那么下列说法.正确的是(  )
①对称点的连线必过对称中心;
②这两个图形一定全等;
③对应线段一定平行(或在一条直线上)且相等;
④将一个图形绕对称中心旋转180°必定与另一个图形重合.

查看答案和解析>>

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.

活动情境:

如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.

 所得结论:

当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如下一个正确结论(或结果):

甲:△AEF的边AE=     cm,EF=     cm;

乙:△FDM的周长为16 cm;

丙:EG=BF.

 你的任务:

1.填充甲同学所得结果中的数据;

2.  写出在乙同学所得结果的求解过程;

3.当点F在AD边上除点A、D外的任何一处(如图2)时:

① 试问乙同学的结果是否发生变化?请证明你的结论;

② 丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

 

查看答案和解析>>

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如下一个正确结论(或结果):
甲:△AEF的边AE=     cm,EF=    cm;
乙:△FDM的周长为16 cm;
丙:EG=BF.
你的任务:
【小题1】填充甲同学所得结果中的数据;
【小题2】 写出在乙同学所得结果的求解过程;
【小题3】当点F在AD边上除点A、D外的任何一处(如图2)时:
① 试问乙同学的结果是否发生变化?请证明你的结论;
② 丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>


同步练习册答案