能够综合运用平行线性质和判定解题. 重点.难点 重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 查看更多

 

题目列表(包括答案和解析)

22、我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”很易得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:
(1)如果一个三角形一边的中线和这边上的高相互重合,则这个三角形是等腰三角形;
(2)如果一个三角形一边的高和这边所对的角的平分线相互重合,则这个三角形是等腰三角形;
(3)如果一个三角形一边的中线和这边所对的角的平分线相互重合,则这个三角形是等腰三角形.
我们运用线段垂直平分线的性质,很易证明猜想(1)的正确性.现请你帮助小明判断他的猜想(2)、(3)是否成立,若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.

查看答案和解析>>

【考点】全等三角形的判定与性质;直角梯形;旋转的性质.

【分析】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,得出四边形ANCD是矩形,推出∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,求出BN=4,求出∠EAM=∠NAB,证△EAM≌△BNA,求出EM=BN=4,根据三角形的面积公式求出即可.

【解答】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,

∵AD∥BC,∠C=90°,

∴∠C=∠ADC=∠ANC=90°,

∴四边形ANCD是矩形,

∴∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,

∴BN=9-5=4,

∵∠M=∠EAB=∠MAN=∠ANB=90°,

∴∠EAM+∠BAM=90°,∠MAB+∠NAB=90°,

∴∠EAM=∠NAB,

∵在△EAM和△BNA中,∠M=∠ANB;∠EAM=∠BAN;AE=AB,

∴△EAM≌△BNA(AAS),

∴EM=BN=4,

∴△ADE的面积是×AD×EM=×5×4=10.

故选A.

【点评】本题考查了矩形的性质和判定,三角形的面积,全等三角形的性质和判定,主要考查学生运用定理和性质进行推理的能力,题目比较好,难度适中.

查看答案和解析>>

我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”很易得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:
(1)如果一个三角形一边的中线和这边上的高相互重合,则这个三角形是等腰三角形;
(2)如果一个三角形一边的高和这边所对的角的平分线相互重合,则这个三角形是等腰三角形;
(3)如果一个三角形一边的中线和这边所对的角的平分线相互重合,则这个三角形是等腰三角形.
我们运用线段垂直平分线的性质,很易证明猜想(1)的正确性.现请你帮助小明判断他的猜想(2)、(3)是否成立?若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.

查看答案和解析>>

25、阅读材料
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;
比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;
我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
(1)写出筝形的两个性质(定义除外);
(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明.

查看答案和解析>>

(11·佛山)阅读材料

我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;

       比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;

       我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;

请解决以下问题:

       如图,我们把满足AB=CD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;

(1)写出筝形的两个性质(定义除外);

(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明;

 

查看答案和解析>>


同步练习册答案