圆周角:顶点在圆上.两边分别与圆还有另一个交点的角叫做圆周角. 例1:下图中是圆周角的有 . ① ② ③ ④ ⑤ ⑥ 查看更多

 

题目列表(包括答案和解析)

类比学习:
我们已经知道,顶点在圆上,且角的两边都和圆相交的角叫做圆周角,如图1,∠APB就是圆周角,弧AB是∠APB所夹的弧.
类似的,我们可以把顶点在圆外,且角的两边都和圆相交的角叫做圆外角,如图2,∠APB就是圆外角,弧AB和弧CD是∠APB所夹的弧,
新知探索:
图(2)中,弧AB和弧CD度数分别为80°和30°,∠APB=
25
25
°,
归纳总结:
(1)圆周角的度数等于它所夹的弧的度数的一半;
(2)圆外角的度数等于
所夹两弧的度数差的一半
所夹两弧的度数差的一半

新知应用:
直线y=-x+m与直线y=-
3
3
x+2相交于y轴上的点C,与x轴分别交于点A、B.经过A、B、C三点作⊙E,点P是第一象限内⊙E外的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,
设∠APC=θ.
①求A点坐标;         ②求⊙E的直径;
③连接MN,求线段MN的长度(可用含θ的三角函数式表示).

查看答案和解析>>

类比学习:
我们已经知道,顶点在圆上,且角的两边都和圆相交的角叫做圆周角,如图1,∠APB就是圆周角,弧AB是∠APB所夹的弧.
类似的,我们可以把顶点在圆外,且角的两边都和圆相交的角叫做圆外角,如图2,∠APB就是圆外角,弧AB和弧CD是∠APB所夹的弧,
新知探索:
图(2)中,弧AB和弧CD度数分别为80°和30°,∠APB=______°,
归纳总结:
(1)圆周角的度数等于它所夹的弧的度数的一半;
(2)圆外角的度数等于______.
新知应用:
直线y=-x+m与直线y=x+2相交于y轴上的点C,与x轴分别交于点A、B.经过A、B、C三点作⊙E,点P是第一象限内⊙E外的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,
设∠APC=θ.
①求A点坐标;         ②求⊙E的直径;
③连接MN,求线段MN的长度(可用含θ的三角函数式表示).

查看答案和解析>>

只用圆规度量∠XOY的度数,方法是:以顶点O为圆心任意画一个圆,与角的两边分别交于点A,B(如图),在这个圆上顺次截取数学公式=数学公式=数学公式=数学公式=数学公式=…这样绕着圆一周周地截下去,直到绕第n周时,终于使第m次截得的弧的末端恰好与点A重合(m>n),那么∠XOY的度数等于________.

查看答案和解析>>

如图,已知半圆的直径,将一个三角板的直角顶点固定在圆心上,当三角板绕着点转动时,三角板的两条直角边与半圆圆周分别交于两点,连结

交于点

(1)   求证:

(2)   求证:恒成立;

(3)   设,求的面积的函数关系式,并写出自变量的取值范围.

 


查看答案和解析>>

如图,已知半圆O的直径AB,将一个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连接AD、BC交于点E.
(1)求证:△ACE∽△BDE;
(2)求证:BD=DE恒成立.

查看答案和解析>>


同步练习册答案