圆周角定理:直径所对的圆周角是直角.反过来.90°的圆周角所对的弦是直径. 例6:已知:如图.AD是⊙O的直径.∠ABC=30°.则∠CAD= . 例7:已知⊙O中...则⊙O的半径为 . 查看更多

 

题目列表(包括答案和解析)

顶点在圆上,并且两边都与圆还有另一个交点的角叫做________

定理:一条弧所对的圆周角等于它所对圆心角的________

推论1:在________中,同弧或________所对的圆周角________,相等的圆周角所对的弧也________

推论2:半圆或直径所对的圆周角是________90°的圆周角所对的弦是________

查看答案和解析>>

圆周角:
(1)定理:一条弧所对的圆周角
等于它所对圆心角的一半
等于它所对圆心角的一半

(2)推论:①圆周角的度数等于它所对弧的度数的
一半
一半

②同弧或等弧所对的圆周角
相等
相等
;在同圆或等圆中,相等的圆周角所对的
弧相等
弧相等

③直径所对的圆周角是
90°
90°
;90°的圆周角所对的弦
是直径
是直径

④如果三角形一条边上的中线等于这条边的一半,那么
这个三角形是直角三角形
这个三角形是直角三角形

查看答案和解析>>

同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1) 如图①△ABC 是一个边长为2 的等腰直角三角形,它的面积是2 ,把它沿着斜边的高线剪开拼成如图②的正方形ABCD ,则这个正方形的面积也就等于三角形的面积即为2 ,则这个正方形的边长就是,它是一个无理数.
(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O',则OO'的长度就等于圆的周长π,所以数轴上点O'代表的实数就是         ,它是一个无理数.
(3) 如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=           ,它是一个无理数.
 好了,相信大家对无理数是不是有了更具体的认识了,那么你也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为的线段吗?
2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系,那么你能在数轴上找到表示﹣的点吗?

查看答案和解析>>

同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1)如图①△ABC是一个边长为2的等腰直角三角形.它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是
2
,它是一个无理数.

(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是
π
π
,它是一个无理数.

(3)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=
5
5
,它是一个无理数.

好了,相信大家对无理数是不是有了更具体的认识了,那么你是也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为
10
的线段吗?

2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系.那么你能在数轴上找到表示 -
5
的点吗?

查看答案和解析>>

同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1)如图①△ABC是一个边长为2的等腰直角三角形.它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是数学公式,它是一个无理数.

(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是______,它是一个无理数.

(3)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=______,它是一个无理数.

好了,相信大家对无理数是不是有了更具体的认识了,那么你是也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为数学公式的线段吗?

2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系.那么你能在数轴上找到表示 数学公式的点吗?

查看答案和解析>>


同步练习册答案