思考: 在上面的问题中.点B和点C的坐标之间有什么关系?每一个点的横坐标与纵坐标的符号与什么有关? 设计意图:设计这两个问题.一方面是复习上一节课的知识.一方面又为本节课的学习做准备. 由于本节课是建立在上一节课的基础之上的.因此以复习的方式来引入新知的学习.也不失为一种好的方法. 查看更多

 

题目列表(包括答案和解析)

问题:如图,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.试探究PG与PC的位置关系及
PG
PC
的值.小聪同学的思路是:延长GP精英家教网交DC于点H,构造全等三角形,经过推理使问题得到解决.
请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及
PG
PC
的值;(要有具体过程)
(2)若将条件“正方形ABCD和正方形BEFG”改为“矩形ABCD≌矩形BEFG”其它条件不变,画图试探求线段PG与PC的关系.

查看答案和解析>>

问题:如图,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.试探究PG与PC的位置关系及
PG
PC
的值.小聪同学的思路是:延长GP
精英家教网
交DC于点H,构造全等三角形,经过推理使问题得到解决.
请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及
PG
PC
的值;(要有具体过程)
(2)若将条件“正方形ABCD和正方形BEFG”改为“矩形ABCD≌矩形BEFG”其它条件不变,画图试探求线段PG与PC的关系.

查看答案和解析>>

在数学的学习中,我们要学会总结,不断地归纳,思考和运用,这样才能提高我们解决问题的能力,下面这个问题大家一定似曾相识:
(1)比较大小:
    ①2+1______
2×1
;   ②3+
1
3
______2
1
3
;   ③8+8______2
8×8

(2)通过上面三个计算,我们可以初步对任意的非负实数a,b做出猜想  a+b______2
ab

(3)蓦然回首,我们发现在《梯形的中位线》一节遇到的一个问题,此时运用这个结论巧妙解决;如图有一个等腰梯形工件(厚度不计),其面积为1800cm2,现在要用细包装带如图那样包扎(四点为四边中点),则至少需要包装带的长度为______cm.
精英家教网

查看答案和解析>>

解决下面问题:
如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=
12
∠A,BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.

小新同学是这样思考的:
在平时的学习中,有这样的经验:假如△ABC是等腰三角形,那么在给定一组对应条件,如图a,BE,CD分别是两底角的平分线(或者如图b,BE,CD分别是两条腰的高线,或者如图c,BE,CD分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.请参考小新同学的思路,解决上面这个问题.

查看答案和解析>>

解决下面问题:
如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且,BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.

小新同学是这样思考的:
在平时的学习中,有这样的经验:假如△ABC是等腰三角形,那么在给定一组对应条件,如图a,BE,CD分别是两底角的平分线(或者如图b,BE,CD分别是两条腰的高线,或者如图c,BE,CD分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.

图a                      图b                      图c
请参考小新同学的思路,解决上面这个问题..

查看答案和解析>>


同步练习册答案