(二)典型例题分析 通过反馈使学生掌握重点内容. 查看更多

 

题目列表(包括答案和解析)

某校教学楼共五层,设有左、右两个楼梯口,通常在放学时,若持续不正常,会导致等待通过的人较多,发生拥堵,从而出现不安全因素.通过观察发现位于教学楼二、三楼的七年级学生从放学时刻起,经过单个楼梯口等待人数按每分钟12人递增,6分钟后经过单个楼梯口等待人数按每分钟8人递减;位于四、五楼的八年级学生从放学时刻起,经过单个楼梯口等待人数按每分钟8人递增,6分钟后经过单个楼梯口等待人数按每分钟16人递减.若在单个楼梯口等待人数超过80人,就可能出现安全问题.
(1)若设在楼梯口等待的人数为y(人),时间为t(分),试分别写出七、八年级学生y和t之间的函数关系式,并指出t的取值范围.
(2)若七、八年级学生同时放学,试计算等待人数超过80人所持续的时间.
(3)要使单个楼梯口等待人数不超过80人,则八年级学生最好比七年级迟几分钟放学?

查看答案和解析>>

某校教学楼共五层,设有左、右两个楼梯口,通常在放学时,若持续不正常,会导致等待通过的人较多,发生拥堵,从而出现不安全因素.通过观察发现位于教学楼二、三楼的七年级学生从放学时刻起,经过单个楼梯口等待人数按每分钟12人递增,6分钟后经过单个楼梯口等待人数按每分钟8人递减;位于四、五楼的八年级学生从放学时刻起,经过单个楼梯口等待人数按每分钟8人递增,6分钟后经过单个楼梯口等待人数按每分钟16人递减.若在单个楼梯口等待人数超过80人,就可能出现安全问题.
(1)若设在楼梯口等待的人数为y(人),时间为t(分),试分别写出七、八年级学生y和t之间的函数关系式,并指出t的取值范围.
(2)若七、八年级学生同时放学,试计算等待人数超过80人所持续的时间.
(3)要使单个楼梯口等待人数不超过80人,则八年级学生最好比七年级迟几分钟放学?

查看答案和解析>>

通过实验研究,专家们发现:初中生听课的注意力指标数是随老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示学生注意力越集中).当0≤x≤10时,图象是抛物线的一部分;当10≤x≤20和精英家教网20≤x≤45时,图象是线段.
(1)当0≤x≤10时,求y关于x的函数关系式;
(2)一道数学竞赛题需要讲解24分钟,问老师能否经过适当安排使学生在听这道题时,注意力的指标数都不低于36?

查看答案和解析>>

[定理表述]
请你根据图1中的直角三角形叙述勾股定理(分别用文字语言及符号语言叙述);
[尝试证明]
它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.现以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;
[知识拓展]
如图3所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:
方案一:如图4所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.
方案二:如图5所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.①在方案一中,a1=
x+3
x+3
km(用含x的式子表示)
②在方案二中,a2=
x2+48
x2+48
km(用含x的式子表示)
③请你分析:要使铺设的输气管道较短,应选择方案一还是方案二.

查看答案和解析>>

精英家教网通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散.下图是学生注意力指标数y随时间x(分钟)变化的函数的近似图象.(y越大表示学生注意力越集中,且图象中的三部分都是线段)
(1)注意力最集中那段时间持续了几分钟?
(2)当0≤x≤10时,求注意力指标数y与时间x之间的函数关系式;
(3)一道数学竞赛题,需要讲解23分钟,问老师能否经过适当安排使学生在听这道题时注意力的指标数都在34以上?

查看答案和解析>>


同步练习册答案