一般地.y=ax2+bx+c称为y是x的二次函数.它的图象是抛物线. 查看更多

 

题目列表(包括答案和解析)

二次函数的一般形式是
y=ax2+bx+c(a≠0,a、b、c为常数)
y=ax2+bx+c(a≠0,a、b、c为常数)
;顶点坐标公式是
(-
b
2a
4ac-b2
4a
(-
b
2a
4ac-b2
4a

查看答案和解析>>

如图,已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx2+nx+p的解析式为
 
,试猜想出与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式为
 

(2)A,B的中点是点C,则sin∠CMB=
 

(3)如果过点M的一条直线与y=mx2+nx+p图象相交于另一精英家教网点N(a,b),a,b满足a2-a+m=0,b2-b+m=0,则点N的坐标为
 

查看答案和解析>>

精英家教网如图,已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)求出y=mx2+nx+p的解析式,试猜想出与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式(不要求证明);
(2)若A,B的中点是点C,求sin∠CMB;
(3)如果过点M的一条直线与y=mx2+nx+p图象相交于另一点N(a,b),a≠b且满足a2-a+q=0,b2-b+q=0(q为常数),求点N的坐标.

查看答案和解析>>

(2005•南充)如图,已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx2+nx+p的解析式为______,试猜想出与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式为______.
(2)A,B的中点是点C,则sin∠CMB=______

查看答案和解析>>

如图,已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx2+nx+p的解析式为______,试猜想出与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式为______.
(2)A,B的中点是点C,则sin∠CMB=______

查看答案和解析>>


同步练习册答案