上节课我们学习了用坐标表示地理位置.本节课我们继续研究坐标方法的另一个应用. 查看更多

 

题目列表(包括答案和解析)

新知识一般有两类:第一类是一般不依赖其他知识的新知识,如“数”,“字母表示数”这样的初始性知识,第二类是在某些旧知识的基础上联系,拓广等方式产生的知识,大多数知识是这样一类。

(1)多项式乘以多项式的法则,是第几类知识?

(2)在多项式乘以多项式之前,我们学习了哪些有关知识?(写出三条即可)

(3)请用你已有的有关知识,通过数和形两个方面说明多项式乘以多项式法则如何获得的?(用(a+b)(c+d)来说明)

查看答案和解析>>

本节我们学习了定理:“直角三角形斜边上的中线等于斜边的一半。”即:
如图①所示,在Rt △ABC中,∠ACB=90°,若CD 是斜边AB上的中线,则有CD=AB。证明这个定理的方法有多种,教材是利用矩形的性质进行证明的,其实还可利用三角形的中位线定理来证明,请你根据图中已添的辅助线证明此定理。
(1)方法(一):如图②所示,延长BC至E,使CE=BC,连结AE;
(2 )方法(二):如图③所示,取BC的中点E,连结DE。

查看答案和解析>>

上学期,我们学习了解一元一次方程及用一元一次方程解决实际问题.本学期,我们又学习了解二元一次方程组,试用二元一次方程组及以前解决实际问题的经验解决下列问题:
某校初一(1)班45名同学为“支援灾区”共捐款900元,捐款情况如下表:
捐款(元) 5 10 20 50
人数 6 7
表中捐款10元和20元的人数不小心被墨水污染,看不清楚,请你确定表中的数据.

查看答案和解析>>

在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x-3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法:
x2+2x-3=x2+2×x×1+12-1-3------①
=(x+1)2-22------②
=…
解决下列问题:
(1)填空:在上述材料中,运用了
转化
转化
的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法;
(2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x-3;
(3)请用上述方法因式分解x2-4x-5.

查看答案和解析>>


同步练习册答案