已知两点的坐标,会画出坐标系; 查看更多

 

题目列表(包括答案和解析)

已知:如图,在平面直角坐标系中,正方形OABC的顶点B的坐标为(2,2),A、C两点分别在x轴、y轴上,P是BC边上一点(不与B点重合),连AP并延长与x轴交于点E,当点P在边BC上移动时,△AOE的面积随之变化。
(1)设PB=a(0<a≤2),求出△AOE的面积S与a的函数关系式;
(2)根据(1)的函数关系式,确定点P在什么位置时,S△AOE=2,并求出此时直线AE的解析式;
(3)在所给的平面直角坐标系中画出(1)中函数的图象和函数S=-a+2的简图;
(4)设函数S=-a+2的图象交a轴于点G,交S轴于点D,点M是(1)的函数图象上的一动点,过M点向S轴作垂线交函数S=-a+2的图象于点H,过M点向a轴作垂线交函数S=-a+2的图象于点Q,请问DQ·HG的值是否会变化?若不变,请求出此值;若变化,请说明理由。

查看答案和解析>>

精英家教网如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

如图,在平面直角坐标系xOy中,函数y=-x的图象l是第二、四象限的角平分线.实验与探究:由图观察易知A(-1,3)关于直线l的对称点A′的坐标为(-3,1),请你写出点B(5,3)关于直线l的对称点B′的坐标:
(-3,-5)
(-3,-5)

归纳与发现:
结合图形,自己选点再试一试,通过观察点的坐标,你会发现:坐标平面内任一点P(m,n)关于第二、四象限的角平分线l的对称点P′的坐标为
(-n,-m)
(-n,-m)

运用与拓广:
已知两点C(6,0),D(2,4),试在直线l上确定一点,使这点到C,D两点的距离之和最小,在图中画出这点的位置,保留作图痕迹,并求出这点的坐标.

查看答案和解析>>

如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.

实验与探究:

(1)  由图观察易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点的位置,并写出他们的坐标:

(           )、   (           );(4分)

归纳与发现:

(2)  结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为(            )(不必证明);(2分)

运用与拓广:

(3)  已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点QDE两点的距离之和最小.(要有必要的画图说明)(3分)

 


查看答案和解析>>


同步练习册答案