观察:教材第54页图6.2-1. 今天我们学习如何用坐标系表示地理位置.首先我们来探究以下问题. 查看更多

 

题目列表(包括答案和解析)

19、七年级下学期数学教材第157页的问题3:某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,抽取一个容量为1000的样本进行调查.小丽同学根据各年龄段实际人口比例分配抽取的人数制成如下条形图:

请你帮助小丽再制作一个反映该地区实际人口比例情况的扇形图,并写出每一部分扇形角的度数:
72
180
108
度.

查看答案和解析>>

教材第66页探索平方差公式时设置了如下情境:边长为b的小正方形纸片放置在边长为a的大正方形纸片上(如图①),你能通过计算未盖住部分的面积得到公式(a+b)(a-b)=a2-b2吗?(不必证明)

(1)如果将小正方形的一边延长(如图②),是否也能推导公式?请完成证明.
(2)面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图③,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×
12
ab+(a-b)2,由此推导出重要的勾股定理:a2+b2=c2.图④为美国第二十任总统伽菲尔德的“总统证法”,请你完成证明.
(3)试构造一个图形,使它的面积能够解释(a-2b)2=a2-4ab+4b2,画在下面的网格(图⑤)中,并标出字母a、b所表示的线段.

查看答案和解析>>

教材第97页在证明“两边对应成比例且夹角对应相等的两个三角形相似”(如图,已知
DE
AB
=
DF
AC
(AB>DE),∠A=∠D,求证:△ABC∽△DEF)时,利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为前两节课已经解决的方法(即已知两组角对应相等推得相似或已知平行推得相似).请利用上述方法完成这个定理的证明.

查看答案和解析>>

如图,八年级(上)教材第57页利用构造直角三角形和画弧的方法在数轴上找到了表示
2
的点A.试利用这个方法,在数轴上找出表示-
13
的点B.(保留画图痕迹)

查看答案和解析>>

下列说法:
6
是二次根式,但不是整式;
②方程x2-x-k=0的根为x1,2=
1+4k
2

③若ac<0,则方程ax2+bx+c=0方程必有实数根;
④课本第54页观察与猜想讨论了一元二次方程根与系数的关系,根据这一关系得方程x2-3x+5=0的两根和是3,两根积是5.
其中错误的有(  )

查看答案和解析>>


同步练习册答案