习题6.5第2题. 查看更多

 

题目列表(包括答案和解析)

用习题4.3第1题的转盘(如图)做游戏,每次游戏游戏者须交游戏费1元.游戏时,游戏者先押一个数字,然后快速地转动转盘,若转盘停止转动时,指针所指格子中的数字恰为游戏者所押数字,则游戏者将获得奖励36元.该游戏对游戏者有利吗?转动多次后,游戏者平均每次将获利或损失多少元?

查看答案和解析>>

28、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习探究,会使你大开眼界并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)           ①
=2002-52                   ②
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称).
(2)用简便方法计算:9×11×101×10001(4分)
问题2:对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa-3a2,就不能直接运用公式了.
此时,我们可以在二次三项式x2+2xa-3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

31、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>

课本习题研究:
(1)课本116页第12题题目内容是这样的:正方形ABCD的对角线交于点O,点O又是另一个正方形A′B′C′O的一个顶点.如果两个正方形的边长相等,那么正方形A′B′C′O绕点O无论怎样旋转,两个正方形重叠部分的面积,总等于一个正方形面积的
 
.请你根据对课本习题的研究,填写(2)题的答案.
(2)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、An,分别是正方形的中心,则n个这样的正方形重叠部分的面积和为
 
cm2
精英家教网

查看答案和解析>>

27、课本习题研究:
课本122页有一道题是这样的:有一台“造数”的机器,它的加工方式是“对输入的数加上2”后输出一个新数,然后再将输出的新数输入“造数”的机器,又“造”出一个新数,依次进行下去(如图所示).

请你根据对“造数”机器的理解继续做下列各题:
(1)如果开始输入的数是5,则第一次输出的数是
7
,再将输出的数输入,则第2次输出的数是
9

(2)如果开始输入的数是5,则第1000次输出的数是
2005

(3)如果开始输入的数是5,则第
1002
次输出的数是2009;
(4)若第2009次输出的数是4020,则开始输入的数是
2

(5)如果开始输入的数是5,第668次输出的数是2009,那么这台“造数”机器的加工方式变为:“对输入的数加上
3
”后输出一个新数,然后再将输出的新数输入“造数”的机器,又“造”出一个新数,依次进行下去.

查看答案和解析>>


同步练习册答案