平行线的概念.性质和画法 查看更多

 

题目列表(包括答案和解析)

知识回顾:我们在学习《二次根式》这一章时,对二次根式有意义的条件、性质和运算法则进行了探索,得到了如下结论:
(1)二次根式
a
有意义的条件是a≥0.
(2)二次根式的性质:①(
a
2=a(a≥0);②
a2
=|a|.
(3)二次根式的运算法则:
a
b
=
ab
(a≥0,b≥0);
a
b
=
a
b
(a≥0,b>0);
③a
c
±b
c
=(a±b)
c
(c≥0).
类比推广:根据探索二次根式相关知识过程中获得的经验,解决下面的问题.
(1)写出n次根式
na
(n≥3,n是整数)有意义的条件和性质;
(2)计算
3-16
+
32

查看答案和解析>>

21、如图,给出下列三个论断:①∠B+∠D=180°;②AB∥CD;③BC∥DE.请你以其中两个论断作为已知条件,填入“已知”栏中,以一个论断作为结论,填入“结论栏中,使之成为一道由已知可得到结论的题目,并说明理由.
已知,如图,
①②

结论:

理由:
平行线的判定与性质

查看答案和解析>>

下列语句中是命题的是


  1. A.
    延长线段AB到点C,使AC=2BC
  2. B.
    你能说出平行线的三条性质吗
  3. C.
    所有的角都相等
  4. D.
    简单的习题

查看答案和解析>>

(2013•绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:
(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:
AO
AD
=
2
3

(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足
AO
AD
=
2
3
,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;
(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究
S四边形BCHG
S△AGH
的最大值.

查看答案和解析>>

我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.
例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).
请你用上面的思想和方法对下面关于圆的问题进行研究:
(1)如图1,在圆O所在平面上,放置一条直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些?(直接写出两个即可)
(2)如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之;
(3)如图3,其中AB是圆O的直径,AC是弦,D是
ABC
的中点,弦DE精英家教网⊥AB于点F.请找出点C和点E重合的条件,并说明理由.

查看答案和解析>>


同步练习册答案