1.在对实际问题的数量关系进行比较分析.作出推断的过程中.提高学生参与数学活动.乐于接触社会环境中数学信息的兴趣, 查看更多

 

题目列表(包括答案和解析)

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:

⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;

⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若     相等,说明理由;若不相等,求出的值(用含的三角函数表示).

 

查看答案和解析>>

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:
⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;
⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若    相等,说明理由;若不相等,求出的值(用含的三角函数表示).

查看答案和解析>>

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:
⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;
⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若    相等,说明理由;若不相等,求出的值(用含的三角函数表示).

查看答案和解析>>

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:

⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;

⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若     相等,说明理由;若不相等,求出的值(用含的三角函数表示).

 

查看答案和解析>>

 我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:

⑴当直线l与方形环的对边相交时(如图),直线l分别交,小明发现相等,请你帮他说明理由;

⑵当直线l与方形环的邻边相交时(如图),l分别交l的夹角为,你认为还相等吗?若     相等,说明理由;若不相等,求出的值(用含的三角函数表示).

 


查看答案和解析>>


同步练习册答案