本节课学习的数学方法: (1)转化思想. (2)运用“同位角相等.两直线平行 判定两条直线平行. [反思]1.什么是“三线八角 ?什么样的角才能称得上是同位角? 查看更多

 

题目列表(包括答案和解析)

通过本节课的学习,你有什么收获?

查看答案和解析>>

本节我们学习了定理:“直角三角形斜边上的中线等于斜边的一半。”即:
如图①所示,在Rt △ABC中,∠ACB=90°,若CD 是斜边AB上的中线,则有CD=AB。证明这个定理的方法有多种,教材是利用矩形的性质进行证明的,其实还可利用三角形的中位线定理来证明,请你根据图中已添的辅助线证明此定理。
(1)方法(一):如图②所示,延长BC至E,使CE=BC,连结AE;
(2 )方法(二):如图③所示,取BC的中点E,连结DE。

查看答案和解析>>

通过本节课的学习,你有什么收获?

查看答案和解析>>

通过本节课的学习,你有什么收获?

查看答案和解析>>

同学们学过有理数减法可以转化为有理数加法来运算,有理数除法可以转化为有理数乘法来运算.其实这种转化的数学方法,在学习数学时会经常用到,通过转化我们可以把一个复杂问题转化为一个简单问题来解决.
例如:计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5

此题我们按照常规的运算方法计算比较复杂,但如果采用下面的方法把乘法转化为减法后计算就变得非常简单.
分析方法:因为
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5

所以,将以上4个等式两边分别相加即可得到结果,解法如下:
解:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+(
1
4
-
1
5
)
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
=1-
1
5
=
4
5

(1)应用上面的方法计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012

(2)计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1
(只填答案).
(3)类比应用上面的方法探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2010×2012

查看答案和解析>>


同步练习册答案