三角形的三边关系 任意画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么? 在一个三角形中,任意两边之和与第三边有什么关系? 说明 △ABC的三边分别为a,b,c.则同时有 活动2 简单应用 查看更多

 

题目列表(包括答案和解析)

任意画一个三角形ABC,在AB,AC边上分别取中点D,E,请你测量DE与BC的大小关系,并测量∠ABC与∠ADE及∠ACB与∠AED的大小关系,再多画几个,你还会发现什么?请用简洁地语言表达出来.

查看答案和解析>>

如图,画一个等腰直角三角形ABC,并过斜边BC上任意一点D作射线AD,再分别过点B、C作射线AD的垂线BE和CF,垂足分别为E、F,量出BE、CF、EF的长.改变点D的位置,重复上面的操作.问BE、CF、EF的长度满足什么关系?并说明理由.

查看答案和解析>>

小聪同学为了探究“直角三角形斜边上的中线与斜边的数量关系”,他先画出了如图(1)和图(2)所示的两个特殊的直角三角形,其中∠BAC均为直角,AD均为斜边BC上的中线,图(1)中∠B=30°,图(2)中∠B=
45°.
(1)请猜想AD与BC之间的数量关系,并在图(1)和图(2)中选择一个加以证明.
(2)如图(3),在任意的Rt△ABC中,AD、BC之间的数量关系是否仍成立?请证明.

查看答案和解析>>

小聪同学为了探究“直角三角形斜边上的中线与斜边的数量关系”,他先画出了如图(1)和图(2)所示的两个特殊的直角三角形,其中∠BAC均为直角,AD均为斜边BC上的中线,图(1)中∠B=30°,图(2)中∠B=
45°.
(1)请猜想AD与BC之间的数量关系,并在图(1)和图(2)中选择一个加以证明.
(2)如图(3),在任意的Rt△ABC中,AD、BC之间的数量关系是否仍成立?请证明.
作业宝

查看答案和解析>>

定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn
①若△DEF的面积为1000,当n为何值时,3<Sn<4?
(请用计算器进行探索,要求至少写出二次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明)

查看答案和解析>>


同步练习册答案