思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时.它的对边与斜边的比值 ,它的邻边与斜边的比值 . (根据是 .) 查看更多

 

题目列表(包括答案和解析)

平面是这样,那曲面呢?我们再看一题(如图1),从A到B,怎样走最近呢?与前两题相同,把圆柱体展开(如图2),此时,只有A点位于与长方形的交界处时,才是最短路径,且只有一条最短路径AB.

从上面几题可以看出立体图形中的最短路径问题,都可先把立题图形转化成平面图形再思考.而且得出正方体有6条最短路径;长方体有2条最短路径;圆柱有1条最短路径.这短短的八个字还真是奥妙无穷啊!
探究问题一:已知,A,B在直线L的两侧,在L上求一点,使得PA+PB最小.(如图所示)

探究问题二:已知,A,B在直线L的同一侧,在L上求一点,使得PA+PB最小.(如图所示)

探究问题三:A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)

探究问题四:AB是锐角MON内部一条线段,在角MON的两边OM,ON上各取一点C,D组成四边形,使四边形周长最小.(如图所示)

查看答案和解析>>

现有如图1的8张大小形状相同的直角三角形纸片,三边长分别是a、b、c.用其中4张纸片拼成如图2的大正方形(空白部分是边长分别为a和b的正方形);用另外4张纸片拼成如图3的大正方形(中间的空白部分是边长为c的正方形).

(一)观察:
从整体看,图2和图3的大正方形的面积都可以表示为(a+b)2,结论①依据整个图形的面积等于各部分面积的和.
图2中的大正方形的面积又可以用含字母a、b的代数式表示为:
a2+b2+2ab
a2+b2+2ab
,结论②
图3中的大正方形的面积又可以用含字母a、b、c的代数式表示为:
c2+2ab
c2+2ab
,结论③
(二)思考:
结合结论①和结论②,可以得到一个等式
(a+b)2=a2+b2+2ab
(a+b)2=a2+b2+2ab

结合结论②和结论③,可以得到一个等式
a2+b2=c2
a2+b2=c2

(三)应用:
请你运用(二)中得到的结论任意选择下列两个问题中的一个解答:
(1)求1.462+2×1.46×2.54+2.542的值;
(2)若分别以直角三角形三边为直径,向外作半圆(如图4),三个半圆的面积分别记作S1、S2、S3,且S1+S2+S3=20,求S2的值.
(四)延伸(本题作为附加题,做对加2分)
若分别以直角三角形三边为直径,向上作三个半圆(如图5),直角边a=5,b=12,斜边c=13,则表示图中阴影部分面积和的数值是:
A
A
  A.有理数     B.无理数     C.无法判断
请作出选择,并说明理由.

查看答案和解析>>


同步练习册答案