2.通过一组同底数幂的乘法的练习.努力探究其规律.在探究过程中理解公式的意义. 查看更多

 

题目列表(包括答案和解析)

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28…?2m×2n=2m+n…?am×an=am+n(m、n都是正整数).
我们亦知:
2
3
2+1
3+1
2
3
2+2
3+2
2
3
2+3
3+3
2
3
2+4
3+4

(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式.
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”.

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整数).我们亦知:
2
3
2+1
3+1
2
3
2+2
3+2
2
3
2+3
3+3
2
3
2+4
3+4
,…
(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;
(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根据这个图形提炼出与(1)中相精英家教网同的关系式并给予证明.

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整数).
探索问题:
(1)比较下列各组数据的大小:
2
3
2+1
3+1
,②
2
3
2+2
3+2
,③
2
3
2+3
3+3
,④
2
3
2+4
3+4
,….
(2)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;并用已学的数学知识说明你发现结论的正确性.
(3)试用(2)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”.

查看答案和解析>>

(2013•鼓楼区一模)常见的“幂的运算”有:
①同底数幂的乘法,
②同底数幂的除法,
③幂的乘方,
④积的乘方.
在“(a2•a32=(a52=a10”的运算过程中,运用了上述幂的运算中的
①③
①③
(填序号).

查看答案和解析>>

25、(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).
(2)阅读下列分解因式的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①
=(1+x)2(1+x)②
=(1+x)3
①上述分解因式的方法是
提公因式法分解因式
,由②到③这一步的根据是
同底数幂的乘法法则

②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是
(1+x)2007

③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).

查看答案和解析>>


同步练习册答案