在引入新课时.借助四个全等的四边形教具的演示实验以及数学基础知识抢答赛.模拟了较为真实的情境来引题开展教学.让学生能及时有效地集中注意力.对本节内容产生疑问与好奇心. 查看更多

 

题目列表(包括答案和解析)

2、我们做一个拼图游戏:用等腰直角三角形拼正方形.请按下面规则与程序操作:
第一次:将两个全等的等腰直角三角形拼成一个正方形;
第二次:在前一个正方形的四条边上再拼上四个全等的等腰直角三角形(等腰直角三角形的斜边与正方形的边长相等),形成一个新的正方形;以后每次都重复第二次的操作
(1)请你在第一次拼成的正方形的基础上,画出第二次和第三次拼成的正方形图形;
(2)若第一次拼成的正方形的边长为a,请你根据操作过程中的观察与思考填写下表:

查看答案和解析>>

如图,正方形ABCD的两条对角线把正方形ABCD分割成四个全等的等腰直角三角形,将它们分别沿正方形ABCD的边翻折,可得到一个面积是原正方形ABCD面积2倍的新正方形EFGH.
请你在图1,图2,图3中完成:将矩形分割成四个三角形,然后将其沿矩形的边翻折,分别得到面积是原矩形面积2倍的三个新的四边形:菱形、矩形、一般的平行四边形.

查看答案和解析>>

(2013•北京)阅读下面材料:
小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.
小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)
请回答:
(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为
a
a

(2)求正方形MNPQ的面积.
(3)参考小明思考问题的方法,解决问题:
如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=
3
3
,则AD的长为
2
3
2
3

查看答案和解析>>

料:

小明遇到这样一个问题:如图1,在边长为的正方形ABCD各边上分别截取AE=BF=CG=DH=1,AFQ=BGM=CHN=DEP=45°,求正方形MNPQ的面积.小明发现:分别延长QE,MF,NG,PH,FA,GB,HC,ED的延长线于点R,S,T,W,可得RQF,SMG,TNH,WPE是四个全等的等腰直角三角形(如图2

请回答:

1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________

2)求正方形MNPQ的面积.

参考小明思考问题的方法,解决问题:

如图3,在等边ABC各边上分别截取AD=BE=CF,再分别过点D,E,FBC,AC,AB的垂线,得到等边RPQ,,AD的长为__________.

 

 

查看答案和解析>>

小明遇到这样一个问题:如图1,在边长为的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积。小明发现:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)请回答:

(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为       

(2)求正方形MNPQ的面积。参考小明思考问题的方法,解决问题:

(3)如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ,若,则AD的长为       

 

查看答案和解析>>


同步练习册答案