1. 活动一.观察与思考 你能分别说出30°.45°.60°角的三角函数值吗? 查看更多

 

题目列表(包括答案和解析)

取一副三角尺,你能分别说出这副三角尺中六个角的度数吗? 这些角中哪些角互为余角? 哪些角互为补角?

查看答案和解析>>

9、妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:

老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…

查看答案和解析>>

妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:

老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…

查看答案和解析>>

妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:

精英家教网

老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…

查看答案和解析>>

观察与思考
如图,小明的爸爸去参加一个重要会议,小明坐在汽车上用所学知识绘制了一张反映小车速度与时间的关系图,第二天,小明拿着这张图给同学看,并向同学提出如下问题,你能回答吗?
(1)在上述变化过程中,自变量是什么?因变量是什么?
(2)小车共行驶了多少时间?最高时速是什么?
(3)小车在哪段时间保持匀速,达到多少?
(4)用语言大致描述这辆汽车的行驶情况?

查看答案和解析>>


同步练习册答案