平面有5个点.每3个点都不在同一条直线上.以其中任意3点组成的三角 形共有 ( ) A.3个 B. 5个 C. 8个 D. 10个 查看更多

 

题目列表(包括答案和解析)

平面内有4个点,每3个点都不在同一条直线上,以其中任意3点组成的三角形共有

[  ]

A.3个

B.4个

C.5个

D.6个

查看答案和解析>>

我们知道过两点有且只有一条直线.
阅读下面文字,分析其内在涵义,然后回答问题:
如图,同一平面中,任意三点不在同一直线上的四个点A、B、C、D,过每两个点画一条直线,一共可以画出多少条直线呢?我们可以这样来分析:
过A点可以画出三条通过其他三点的直线,过B点也可以画出三条通过其他三点的直线.同样,过C点、D点也分别可以画出三条通过其他三点的直线.这样,一共得到3×4=12条直线,但其中每条直线都重复过一次,如直线AB和直线BA是一条直线,因此,图中一共有
3×42
=6条直线.请你仿照上面分析方法,回答下面问题:
精英家教网
(1)若平面上有五个点A、B、C、D、E,其中任何三点都不在一条直线上,过每两点画一条直线,一共可以画出
 
条直线;
若平面上有符合上述条件的六个点,一共可以画出
 
条直线;
若平面上有符合上述条件的n个点,一共可以画出
 
条直线(用含n的式子表示).
(2)若我校初中24个班之间进行篮球比赛,第一阶段采用单循环比赛(每两个班之间比赛一场),类比上面的分析计算第一阶段比赛的总场次是多少?

查看答案和解析>>

我们知道过两点有且只有一条直线.
阅读下面文字,分析其内在涵义,然后回答问题:
如图,同一平面中,任意三点不在同一直线上的四个点A、B、C、D,过每两个点画一条直线,一共可以画出多少条直线呢?我们可以这样来分析:
过A点可以画出三条通过其他三点的直线,过B点也可以画出三条通过其他三点的直线.同样,过C点、D点也分别可以画出三条通过其他三点的直线.这样,一共得到3×4=12条直线,但其中每条直线都重复过一次,如直线AB和直线BA是一条直线,因此,图中一共有数学公式=6条直线.请你仿照上面分析方法,回答下面问题:

(1)若平面上有五个点A、B、C、D、E,其中任何三点都不在一条直线上,过每两点画一条直线,一共可以画出______条直线;
若平面上有符合上述条件的六个点,一共可以画出______条直线;
若平面上有符合上述条件的n个点,一共可以画出______条直线(用含n的式子表示).
(2)若我校初中24个班之间进行篮球比赛,第一阶段采用单循环比赛(每两个班之间比赛一场),类比上面的分析计算第一阶段比赛的总场次是多少?

查看答案和解析>>

我们知道过两点有且只有一条直线.阅读下面文字,分析其内在涵义,然后回答问题:如图,同一平面中,任意三点不在同一直线上的四个点A、B、C、D,过每两个点画一条直线,一共可以画出多少条直线呢?我们可以这样来分析:过A点可以画出三条通过其他三点的直线,过B点也可以画出三条通过其他三点的直线.同样,过C点、D点也分别可以画出三条通过其他三点的直线.这样,一共得到3×4=12条直线,但其中每条直线都重复过一次,如直线AB和直线BA是一条直线,因此,图中一共有=6条直线.请你仿照上面分析方法,回答下面问题:

(1)若平面上有五个点A、B、C、D、E,其中任何三点都不在一条直线上,过每两点画一条直线,一共可以画出_条直线.           
若平面上有符合上述条件的六个点,一共可以画出_条直线;
若平面上有符合上述条件的n个点,一共可以画出_条直线(用含n的式子表示).
(2)若我校初中24个班之间进行篮球比赛,第一阶段采用单循环比赛(每两个班之间比赛一场),类比上面的分析计算第一阶段比赛的总场次是多少?

查看答案和解析>>

1、填空:
(1)在圆周上有7个点A,B,C,D,E,F和G,连接每两个点的线段共可作出
21
条.
(2)已知5条线段的长分别是3,5,7,9,11,若每次以其中3条线段为边组成三角形,则最多可构成互不全等的三角形
7
个.
(3)三角形的三边长都是正整数,其中有一边长为4,但它不是最短边,这样不同的三角形共有
5
个.
(4)以正七边形的7个顶点中的任意3个为顶点的三角形中,锐角三角形的个数是
14

(5)平面上10条直线最多能把平面分成
56
个部分.
(6)平面上10个圆最多能把平面分成
92
个区域.

查看答案和解析>>


同步练习册答案