题目列表(包括答案和解析)
购票人数 | 1-50人 | 50-100人 | 100人以上 |
每人门票价 | 13元 | 11元 | 9元 |
阅读下面资料,回答问题:
代入消元法、加减消元法是解二元一次方程组的基本解法,但对某些方程组若能根据其结构特征,采用适当的策略,将其变形,灵活施法,往往可以使求解简捷.例如:
例1:用适当的方法解下列方程:
解:①-②得:4(x-y)+8(x-y)=24,
即:x-y=2,③
将③代入①得:4x+5×2=30,
x=5,
将③代入②得:4y-3×2=6,
y=3,
∴
(1)在以上解方程组的过程中用________数学方法达到消元的目的.
(2)试用以上方法解下列方程组:
阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:
问题:某人买13个鸡蛋,5个鸭蛋、9个鹅蛋共用去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共用去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x、y、z元,则需要求x+y+z的值.由题意,知;
视为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.
解法1:视为常数,依题意得
解这个关于y、z的二元一次方程组得
于是.
评注:也可以视z为常数,将上述方程组看成是关于、的二元一次方程组,解答方法同上,你不妨试试.
分析:视为整体,由(1)、(2)恒等变形得
,
.
解法2:设,,代入(1)、(2)可以得到如下关于、的二元一次方
程组
由⑤+4×⑥,得,.
评注:运用整体的思想方法指导解题.视,为整体,令,,代人①、②将原方程组转化为关于、的二元一次方程组从而获解.
请你运用以上介绍的任意一种方法解答如下数学竞赛试题:
购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:
品名 次数 | A1 | A2 | A3 | A4 | A5 | 总钱数 |
第一次购 买件数 | l | 3 | 4 | 5 | 6 | 1992 |
第二次购 买件数 | l | 5 | 7 | 9 | 11 | 2984 |
那么,购买每种教学用具各一件共需多少元?
注意:为了使同学们更好的解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,并完成本题解答的全过程,也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求,进行解答即可.
小丽乘汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米,小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟,求小丽所乘汽车返回时的平均速度.
(Ⅰ)设小丽所乘汽车返回时的平均速度为x千米/时,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)
速度(千米/时 | 所用时间(时) | 所走的路程(千米) | |
去时 | ________ | ________ | 84 |
返回时 | x | ________ | 45 |
(Ⅱ)列出方程(组),并求出问题的解.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com