5.渗透公式恒等变形的和谐美.简洁美. 查看更多

 

题目列表(包括答案和解析)

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它.下面我们就求函数的极值,介绍一下配方法.
例:已知代数式a2+6a+2,当a=
-3
-3
时,它有最小值,是
-7
-7

解:a2+6a+2=a2+6a+9-9+2=(a+3)2-9+2=(a+3)2-7
因为(a+3)2≥0,所以(a+3)2-7≥-7.
所以当a=-3时,它有最小值,是-7.
参考例题,试求:
(1)填空:当a=
3
3
时,代数式(a-3)2+5有最小值,是
5
5

(2)已知代数式a2+8a+2,当a为何值时,它有最小值,是多少?

查看答案和解析>>

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它.下面我们就求函数的极值,介绍一下配方法.
例:已知代数式a2+6a+2,当a=______时,它有最小值,是______.
解:a2+6a+2=a2+6a+9-9+2=(a+3)2-9+2=(a+3)2-7
因为(a+3)2≥0,所以(a+3)2-7≥-7.
所以当a=-3时,它有最小值,是-7.
参考例题,试求:
(1)填空:当a=______时,代数式(a-3)2+5有最小值,是______.
(2)已知代数式a2+8a+2,当a为何值时,它有最小值,是多少?

查看答案和解析>>

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它.下面我们就求函数的极值,介绍一下配方法.
例:已知代数式a2+6a+2,当a=______时,它有最小值,是______.
a2+6a+2=a2+6a+9-9+2=(a+3)2-9+2=(a+3)2-7
因为(a+3)2≥0,所以(a+3)2-7≥-7.
所以当a=-3时,它有最小值,是-7.
参考例题,试求:
(1)填空:当a=______时,代数式(a-3)2+5有最小值,是______.
(2)已知代数式a2+8a+2,当a为何值时,它有最小值,是多少?

查看答案和解析>>

阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:
问题:某人买13个鸡蛋,5个鸭蛋、9个鹅蛋共用去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共用去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x、y、z元,则需要求x+y+z的值.由题意,知
13x+5y+9z=9.25---(1)
2x+4y+3z=3.20----(2)

视x为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.
解法1:视x为常数,依题意得
5y+9z=9.25-13x---(3)
4y+3z=3.20-2x----(4)

解这个关于y、z的二元一次方程组得
y=0.05+x
z=1-2x

于是x+y+z=x+0.05+x+1-2x=1.05.
评注:也可以视z为常数,将上述方程组看成是关于x、y的二元一次方程组,解答方法同上,你不妨试试.
分析:视x+y+z为整体,由(1)、(2)恒等变形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
解法2:设x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下关于a、b的二元一次方
程组
5a+4b=9.25---(5)
4a-b=3.20----(6)

由⑤+4×⑥,得21a+22.05,a=1.05.
评注:运用整体的思想方法指导解题.视x+y+z,2x+z为整体,令a=x+y+z,b=2x+z,代入①、②将原方程组转化为关于a、b的二元一次方程组从而获解.
请你运用以上介绍的任意一种方法解答如下数学竞赛试题:
购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:
精英家教网
那么,购买每种教学用具各一件共需多少元?

查看答案和解析>>

(2012•郴州)阅读下列材料:
    我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=
|A×m+B×n+C|
A2+B2


    例:求点P(1,2)到直线y=
5
12
x-
1
6
的距离d时,先将y=
5
12
x-
1
6
化为5x-12y-2=0,再由上述距离公式求得d=
|5×1+(-12)×2+(-2)|
52+(-12)2
=
21
13

    解答下列问题:
    如图2,已知直线y=-
4
3
x-4
与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
    (1)求点M到直线AB的距离.
    (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案