(三)解决办法 在用面积法推导多项式与多项式乘法法则过程中.应让学生充分理解多项式乘法法则的几何意义.这样既便于学生理解记忆公式.又能让学生在解题过程中准确地使用. 查看更多

 

题目列表(包括答案和解析)

运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.
(1)如图1,在等腰三角形ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2.请用面积法证明:h1+h2=h;
精英家教网
(2)当点M在BC延长线上时,h1、h2、h之间的等量关系式是
 
;(直接写出结论不必证明)
(3)如图2在平面直角坐标系中有两条直线l1:y=
34
x+3、l2:y=-3x+3,若l2上的一点M到l1的距离是1,请运用(1)、(2)的结论求出点M的坐标.

查看答案和解析>>

24、阅读并解决问题.
对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像这样,先添-适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是实数,试比较x2-4x+5与-x2+4x-4的大小,说明理由.

查看答案和解析>>

运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.
(1)如图1,在等腰三角形ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2.请用面积法证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间的等量关系式是______;(直接写出结论不必证明)
(3)如图2在平面直角坐标系中有两条直线l1:y=x+3、l2:y=-3x+3,若l2上的一点M到l1的距离是1,请运用(1)、(2)的结论求出点M的坐标.

查看答案和解析>>

运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.
(1)如图1,在等腰三角形ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2.请用面积法证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间的等量关系式是______;(直接写出结论不必证明)
(3)如图2在平面直角坐标系中有两条直线l1:y=x+3、l2:y=-3x+3,若l2上的一点M到l1的距离是1,请运用(1)、(2)的结论求出点M的坐标.

查看答案和解析>>

运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.
(1)如图1,在等腰三角形ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2.请用面积法证明:h1+h2=h;

(2)当点M在BC延长线上时,h1、h2、h之间的等量关系式是______;(直接写出结论不必证明)
(3)如图2在平面直角坐标系中有两条直线l1:y=x+3、l2:y=-3x+3,若l2上的一点M到l1的距离是1,请运用(1)、(2)的结论求出点M的坐标.

查看答案和解析>>


同步练习册答案