课本P89页.习题9.5第3题 选做 4.已知a+b=7.ab=6.求a2b+ab2的值. 查看更多

 

题目列表(包括答案和解析)

4、创新题:教材中的变型题
(P137,习题4.5第1题)按图所示,所示的方法将几何体切开,所得的三个截面有没有互相平行的线段?如果有,填上字母表示出来.

查看答案和解析>>

阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图a可以得到a2+3ab+2b2=(a+2b)(a+b).请回答下列问题:

(1)写出图b中所表示的数学等式是
2a2+5ab+2b2=(2a+b)(a+2b)
2a2+5ab+2b2=(2a+b)(a+2b)

(2)试画出一个长方形,使得用不同的方法计算它的面积时,能得到2a2+3ab+b2=(2a+b)(a+b).
(3)课本68页练一练,有一题:如图c,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x、y的多少表示)
4xy=(x+y)2-(x-y)2
4xy=(x+y)2-(x-y)2

(4)通过上述的等量关系,我们可知:
当两个正数的和一定时,它们的差的绝对值越小则积越
(填“大”或“小”).
当两个正数的积一定时,它们的差的绝对值越小则和越
(填“大”或“小”).
(5)利用上面得出的结论,对于正数x,求:
代数式:2x+
2x
的最小值是
4
4

代数式:x(6-x)的最大值是
9
9

查看答案和解析>>

阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图a可以得到a2+3ab+2b2=(a+2b)(a+b).请回答下列问题:

(1)写出图b中所表示的数学等式是______.
(2)试画出一个长方形,使得用不同的方法计算它的面积时,能得到2a2+3ab+b2=(2a+b)(a+b).
(3)课本68页练一练,有一题:如图c,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x、y的多少表示)______.
(4)通过上述的等量关系,我们可知:
当两个正数的和一定时,它们的差的绝对值越小则积越______(填“大”或“小”).
当两个正数的积一定时,它们的差的绝对值越小则和越______(填“大”或“小”).
(5)利用上面得出的结论,对于正数x,求:
代数式:2x+数学公式的最小值是______;
代数式:x(6-x)的最大值是______.

查看答案和解析>>

(以下两小题选做一题,第1小题满分14分,第2小题满分为10分.若两小题都做,以第1小题计分)
选做第
 
小题.
(1)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①如图,将纸片沿CE对折,点B落在x轴上的点D处,求点D的坐标;
②在①中,设BD与CE的交点为P,若点P,B在抛物线y=x2+bx+c上,求b,c的值;
③若将纸片沿直线l对折,点B落在坐标轴上的点F处,l与BF的交点为Q,若点Q在②的抛物线上,求l的解析式.
(2)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①求直线AC的解析式;
②若M为AC与BO的交点,点M在抛物线y=-
85
x2+kx上,求k的值;
③将纸片沿CE对折,点B落在x轴上的点D处,试判断点D是否在②的抛物线上,并说明理由.精英家教网

查看答案和解析>>

(以下两小题选做一题,第1小题满分14分,第2小题满分为10分.若两小题都做,以第1小题计分)
选做第______小题.
(1)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①如图,将纸片沿CE对折,点B落在x轴上的点D处,求点D的坐标;
②在①中,设BD与CE的交点为P,若点P,B在抛物线y=x2+bx+c上,求b,c的值;
③若将纸片沿直线l对折,点B落在坐标轴上的点F处,l与BF的交点为Q,若点Q在②的抛物线上,求l的解析式.
(2)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①求直线AC的解析式;
②若M为AC与BO的交点,点M在抛物线y=-x2+kx上,求k的值;
③将纸片沿CE对折,点B落在x轴上的点D处,试判断点D是否在②的抛物线上,并说明理由.

查看答案和解析>>


同步练习册答案