使学生进一步理解因式分解的意义. 查看更多

 

题目列表(包括答案和解析)

(2011•鞍山一模)给出三个整式a2,b2和2ab.
(1)当a=
3
-1,b=
3
+1时,求a2+b2+2ab的值;
(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.

查看答案和解析>>

22、给出三个整式a2,b2和2ab.
(1)当a=3,b=4时,求a2+b2+2ab的值;
(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.

查看答案和解析>>

精英家教网根据多项式的乘法与因式分解的关系,可得x2-x-6=(x+2)(x-3),右边的两个一次两项式的系数有关系11×-32,左边上、下角两数积是原式左边二次项的系数,右边两数积是原式左边常数项,交叉相乘积之和是原式左边一次项的系数.这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题.
(1)填空:
①分解因数:6x2-x-2=
 

②解方程:3x2+x-2=0,左边分解因式得(
 
)(
 
)=0,∴x1=
 
,x2=
 

(2)解方程x2+
2x2-3
=0

查看答案和解析>>

阅读理解:把多项式am+an+bm+bn分解因式.
解法一:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)
解法二:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b)
观察上述因式分解的过程,回答下列问题:
(1)分解因式:mx-2m+nx-2n
(2)已知:a,b,c为△ABC的三边,且a2-ab+4ac-4bc=0,试判断△ABC的形状.

查看答案和解析>>

对于多项式x3-5x2+x+10,如果我们把x=2代入此多项式,发现多项式x3-5x2+x+10=0,这时可以断定多项式中有因式(x-2)(注:把x=a代入多项式能使多项式的值为0,则多项式含有因式(x-a)),于是我们可以把多项式写成:x3-5x2+x+10=(x-2)(x2+mx+n),
(1)求式子中m、n的值;
(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3-2x2-13x-10的因式.

查看答案和解析>>


同步练习册答案