进一步体会整式乘法和因式分解的对立统一的关系.体会“两分法 看问题的世界观. 说明 以前这部分内容是渗透到用平方差公式和完全平方公式因式分解的两节中.现在是作为独立的一课时.也就是综合运用提公因式法.运用公式法进行多项式的因式分解.对这部分内容的教学.要根据不同的题目.进行具体分析.灵活地运用各种方法来分解因式.教学时.让学生在观察.练习的过程中.主动归纳因式分解的方法步骤.探求并发现因式分解的最终结果的形式.使学生在主动探索的情境中.学会具体问题具体分析的方法.体会到成功的喜悦. 查看更多

 

题目列表(包括答案和解析)

利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的第9章《整式乘法与因式分解》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?
(1)如图,一个边长为1的正方形,依次取正方形面积的,根据图示我们可以知道:          

利用上述公式计算:          
(2)计算:          
(3)计算:         

查看答案和解析>>

利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的第9章《整式乘法与因式分解》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?

(1)如图,一个边长为1的正方形,依次取正方形面积的,根据图示我们可以知道:          

利用上述公式计算:          

(2)计算:          

(3)计算:         

 

查看答案和解析>>

我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,
即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.
如:(1)x2+5x+6=x2+(3+2)x+3×2=(x+2)(x+3);
(2)x2-5x-6=x2+(-6+1)x+(-6)×1=(x-6)(x+1).
请你仿照上述方法,把下列多项式分解因式:
(1)x2-8x+7;
(2)x2+7x-18.

查看答案和解析>>

小明在做作业时,不慎将墨水滴在一个三项式上,将前后两项污染得看不清楚了,但中间项是12xy,为了便于填上后面的空,请你帮他把前后两项补充完整,使它成为完全平方式,你有几种方法?(至少写出三种不同的方法)
三项式:■+12xy+■=
(  )
(  )
2
(1)
4x2+12xy+9y2=(2x+3y)2
4x2+12xy+9y2=(2x+3y)2
;(2)
9x2+12xy+4y2=(3x+2y)2
9x2+12xy+4y2=(3x+2y)2
;(3)
9x2+12xy+4y2=(-3x-2y)2
9x2+12xy+4y2=(-3x-2y)2

我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.
如:
(1)x2+5x+6=x2+(3+2)x+3×2=(x+2)(x+3);
(2)x2-5x-6=x2+(-6+1)x+(-6)×1=(x-6)(x+1).
请你仿照上述方法,把下列多项式分解因式:
(1)x2-8x+7;
(2)x2+7x-18.

查看答案和解析>>

小明在做作业时,不慎将墨水滴在一个三项式上,将前后两项污染得看不清楚了,但中间项是12xy,为了便于填上后面的空,请你帮他把前后两项补充完整,使它成为完全平方式,你有几种方法?(至少写出三种不同的方法)三项式:■+12xy+■=(    ) 2
【小题1】               ;(2)               ;(3)               
我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.
如:(1)x2+5x+6= x2+(3+2)x+3×2=(x+2)(x+3);(2)x2-5x-6= x2+(-6+1)x+(-6)×1="(x-6)(x+1)" .
请你仿照上述方法,把下列多项式分解因式:
【小题2】x2-8x+7
【小题3】x2+7x-18

查看答案和解析>>


同步练习册答案