4.下面两个三角形相似吗?为什么? (3) (6)∠A=∠C.求证:△ABC∽△ADE 查看更多

 

题目列表(包括答案和解析)

电焊工想利用一块边长为的正方形钢板做成一个扇形,于是设计了以下三种方案:

方案一:如图1,直接从钢板上割下扇形

方案二:如图2,先在钢板上沿对角线割下两个扇形,再焊接成一个大扇形(如图3).

方案三:如图4,先把钢板分成两个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将四个小扇形按与图3类似的方法焊接成一个大扇形.

图1                图2               图3

1.容易得出图1、图3中所得扇形的圆心角均为,那么按方案三所焊接成的大扇形的圆心角也为吗?为什么?

2.容易得出图1中扇形与图3中所得大扇形的面积相等,那么按方案三所焊成的大扇形的面积也与方案二所焊接成的大扇形的面积相等吗?若不相等,面积是增大还是减小?为什么?

3.若将正方形钢板按类似图4的方式割成个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将这个小扇形按类似方案三的方式焊接成一个大扇形,则当逐渐增大时,所焊接成的大扇形的面积如何变化?

 

查看答案和解析>>

电焊工想利用一块边长为的正方形钢板做成一个扇形,于是设计了以下三种方案:

方案一:如图1,直接从钢板上割下扇形

方案二:如图2,先在钢板上沿对角线割下两个扇形,再焊接成一个大扇形(如图3).

方案三:如图4,先把钢板分成两个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将四个小扇形按与图3类似的方法焊接成一个大扇形.

图1                 图2                图3

1.容易得出图1、图3中所得扇形的圆心角均为,那么按方案三所焊接成的大扇形的圆心角也为吗?为什么?

2.容易得出图1中扇形与图3中所得大扇形的面积相等,那么按方案三所焊成的大扇形的面积也与方案二所焊接成的大扇形的面积相等吗?若不相等,面积是增大还是减小?为什么?

3.若将正方形钢板按类似图4的方式割成个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将这个小扇形按类似方案三的方式焊接成一个大扇形,则当逐渐增大时,所焊接成的大扇形的面积如何变化?

 

查看答案和解析>>

如图,等腰三角形与正三角形的形状有着差异,我们把它与正三角形的接近程度称为等腰三角形的“正度”,在研究“正度”时,应符合下面四个条件:①“正度”的值是非负数;②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
设等腰三角形的底和腰分别为a,b,底角和顶角分别为α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且当两个等腰三角形相似时,它们的底角相等,显然,它们的“正度”|sinα-
3
2
|
也相等,当α=60°时,|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因为此时正三角形的正度是1!
解答下列问题:
甲同学认为:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同学认为:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教网(1)他们的说法合理吗?为什么?
(2)对你认为不合理的方案加以改进,使其合理;
(3)请你再给出一种衡量等腰三角形“正度”的合理的表达式,并说明理由.

查看答案和解析>>

 电焊工想利用一块边长为的正方形钢板做成一个扇形,于是设计了以下三种方案:

方案一:如图1,直接从钢板上割下扇形

方案二:如图2,先在钢板上沿对角线割下两个扇形,再焊接成一个大扇形(如图3).

方案三:如图4,先把钢板分成两个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将四个小扇形按与图3类似的方法焊接成一个大扇形.

图1                 图2                图3                 图4

1.(1)容易得出图1、图3中所得扇形的圆心角均为,那么按方案三所焊接成的大扇形的圆心角也为吗?为什么?

2.(2)容易得出图1中扇形与图3中所得大扇形的面积相等,那么按方案三所焊成的大扇形的面积也与方案二所焊接成的大扇形的面积相等吗?若不相等,面积是增大还是减小?为什么?

3.(3)若将正方形钢板按类似图4的方式割成个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将这个小扇形按类似方案三的方式焊接成一个大扇形,则当逐渐增大时,所焊接成的大扇形的面积如何变化?

 

查看答案和解析>>

电焊工想利用一块边长为a的正方形钢板ABCD做成一个扇形,于是设计了以下三种方案:
方案一:如图1,直接从钢板上割下扇形ABC.
方案二:如图2,先在钢板上沿对角线割下两个扇形,再焊接成一个大扇形(如图3).
方案三:如图4,先把钢板分成两个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将四个小扇形按与图3类似的方法焊接成一个大扇形.

(1)容易得出图1、图3中所得扇形的圆心角均为90°,那么按方案三所焊接成的大扇形的圆心角也为90°吗?为什么?
(2)容易得出图1中扇形与图3中所得大扇形的面积相等,那么按方案三所焊成的大扇形的面积也与方案二所焊接成的大扇形的面积相等吗?若不相等,面积是增大还是减小?为什么?
(3)若将正方形钢板按类似图4的方式割成n个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将这2n个小扇形按类似方案三的方式焊接成一个大扇形,则当n逐渐增大时,所焊接成的大扇形的面积如何变化?

查看答案和解析>>


同步练习册答案