8.△ABC的三边长分别为5.12.13.与△ABC相似的△A′B′C′的最大边长为26.则△A′B′C′的周长为 . 查看更多

 

题目列表(包括答案和解析)

△ABC的三边长分别为5、12、13,与它相似的△DEF的最小边长为15,求△DEF的其他两条边长和周长.

查看答案和解析>>

精英家教网如图,在△ABC中,∠C=90°,角A、B、C的对边分别为a、b、c,设△ABC的面积为s,周长的一半为l.
(1)填写表:
三边a、b、c l-a l-b s
3、4、5 3 2 6
5、12、13
8、15、17
(2)观察表,令m=l-a,n=l-b,探究m、n与s之间的关系,并对你的结论给予证明.

查看答案和解析>>

阅读材料:如图,△ABC的周长为l,内切圆O的半径为r,连结OA、OB、OC,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积

∵S△ABC=S△OAB+S△OBC+S△OCA

又∵S△OABAB·r,S△OBCBC·r,S△OCACA·r

∴S△ABCAB·r+BC·r+CA·r=l·r(可作为三角形内切圆半径公式)

(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;

(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图)且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;

(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…an,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>

精英家教网阅读材料:如图1,△ABC的周长为l,面积为S,内切圆O的半径为r,探究r与S、l之间的关系.连接OA,OB,OC∵S=S△OAB+S△OBC+S△OCA
又∵S△OAB=
1
2
AB•r
S△OBC=
1
2
BC•r
S△OCA=
1
2
CA•r

S=
1
2
AB•r+
1
2
BC•r+
1
2
CA•r=
1
2
l•r

r=
2S
l

解决问题:
(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形ABCD存在内切圆(与各边都相切的圆),如图2且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;
(3)若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…,an,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>

在△ABC中,∠C=90°,周长为60,斜边与一条直角边的比为13:5,则这个三角形的三边长分别为(   )

A.5、4、3               B.13、12、5           C.10、8、6            D.26、24、10

查看答案和解析>>


同步练习册答案